
University of Warsaw, PhD Open, Exam

Analysis of Systems with Infinite-State Spaces

Javier Esparza, Technical University of Munich
esparza@in.tum.de

1. Show that the reachability problem for timed automata is NP-hard.

Given: A timed automaton A, a control state q.
Decide: Is some configuration of A of the form 〈q, t〉 reachable from

the initial configuration?

You get extra points if your reduction assumes that the constants of the
timed automaton must be given in unary; in other words, if you assume that
the size of the constant c is c.

Remark: The problem is PSPACE-complete. A proof can be found in Section
4.5 of Alur and Dill’s paper, accessible online at

http://www.cs.aau.dk/ srba/courses/MCS-07/TA.pdf

You can answer by “copying” Alur and Dill’s proof, but then you have to fill
out the details omitted in the paper. Directly finding a reduction from some
NP-complete problem, say SAT, is easier.

2. This question is about Petri nets. The configurations of a Petri net are
usually called markings. A marking is a vector of natural numbers, one for
each place of the net. The i-th component of the vector indicates the number
of tokens in the i-th place. An execution of the net is a (finite or infinite)
sequence of markings, each one reachable from the previous one through the
firing of a transition.
Show that the following problem is decidable.

Given: A Petri net N with initial marking M0.
Decide: Does N have an infinite execution from M0?

Remark: If you never heard about Petri nets before, go to
http://en.wikipedia.org/wiki/Petri net

and read the sections “Syntax” and “Execution semantics”.

Hint: Use Dickson’s lemma.

1



3. In the course we have seen in detail an algorithm that, given an NFA
recognizing a set C of configurations of a pushdown automaton P , constructs
another NFA for the set pre∗(C) of predecessors of C. A description of the
algorithm can also be found in Section 4 of

http://www7.in.tum.de/um/bibdb/esparza/cav00.pdf

Section 6 presents a very similar algorithm for the set post∗(C) of successors
of C. In this question we call these algorithms the pre∗- and post∗-algorithms
for pushdown automata.

(a). A monadic rewrite system over a finite alphabet Σ is a set R of rules
of the form a → w, where a ∈ Σ and w ∈ Σ∗. Given w1, w2 ∈ Σ∗, we say
that w2 is an immediate successor of w1 if there is a rule a → w in R and
u, v ∈ Σ∗ such that w1 = uav and w2 = uwv. As usual, the successor relation
between words of Σ∗ is defined as the reflexive and transitive closure of the
immediate successor relation.
Give a pre∗-algorithm for monadic rewrite systems by suitably modifying the
pre∗-algorithm for pushdown automata.

(b). Give a monadic rewrite system R and a word w such that post∗({w})
is not a regular language. This shows that the post∗-algorithm for pushdown
automata cannot be extended to monadic rewrite systems. Explain why.

(c). The pre∗- and post∗-algorithms for pushdown automata are polynomial
both in the size of the pushdown automaton and in the size of the NFA. In
this question we see that the use of NFAs as data structure to represent sets
of configurations is crucial for polynomiality.
Show that there is no polynomial algorithm that, given a pushdown automa-
ton and a DFA recognizing a set of configurations C, returns another DFA
recognizing pre∗(C).
Hint: Show that the minimal DFA for pre∗(C) has exponential size.

2


