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Learning Bayesian networks from data Concluding remarks

There exist algorithms with a capability to analyze data, discover
causal patterns in them, and build models based on these data.
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The problem of learning

Given:
A set of attributes X,
A database D over X,

Do:
Obtain causal insight
Calculate P(X'|X"",D) (perform inference)

General solution:

Learn “the best” causal/probabilistic model in
order to gain insight / perform inference.

(A model of statistical relationships +
observations = predictions and diagnoses.)
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/Why are we also interested in causality?

Reason 1: Ease of model-building and model
enhancements: Experts already think in causal terms.

Reason 2: Predicting the effects of manipulation.

Given (2), is (1) really surprising?
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Causality and probability
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The only reference to causality in a typical statistics textbook is:
“correlation does not mean causation”

(if the textbook contains the word “causality” at all ©).

Many confusing substitute terms: “confounding factor,” “latent
variable,” “intervening variable,” etc.

What does correlation mean then (with respect to causality)?

The goal of experimental design is often to establish (or
disprove) causation. We use statistics to interpret the results
of experiments (i.e., to decide whether a manipulation of the
independent variable caused a change in the dependent
variable).

How are causality and probability actually related and what
does one tell us about the other?

Not knowing this constitutes a handicap! /
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Bayesian learning
Example

Causality and probability

Software demo

@ Motivation
Constraint-based learning
Concluding remarks

weather

O

) 4

O

barometer
reading
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Causality and probability are closely related and their relation
should be made clear in statistics.

Probabilistic dependence is considered a necessary condition for
establishing causation (is it sufficient?).

Weather and barometer reading are correlated
because the weather causes the barometer
reading.

A cause can cause an effect but it does not
have to. Causal connections result in
probabilistic dependencies (or correlations in
linear case).

N W m% ——  Learning Bayesian Networks and Causal Discovery
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Causal graphs

Acyclic directed graphs (hence, no

time and no dynamic reasoning)

representing a snapshot of the world at

a given time.

Nodes are random variables and arcs

are direct causal dependencies
between them.

Causal connections result in correlation
(in general probabilistic dependence).

 glass on the road will be
correlated with flat tire

 glass on the road will be
correlated with noise

* bumpy feeling will be
correlated with noise

(== T— 1 W) P

ecision Systerms Laboratory

Example
Software demo
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glass on thorns on

the road the road
nails on
the road

flat tire

bumpy
feeling O
steering
O problems
an .
accident noise
@
a knife \
O
o O car
Injury damage
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An axiomatic condition describing the relationship
between causality and probability.

A variable in a causal graph is probabilistically
independent of its non-descendants given its
immediate predecessors.

Axiomatic, but used by almost everybody in practice and
no convincing counter examples to it have been shown
so far (at least outside the quantum world).
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/Markov condition: Implications

thorns on
Variables A and B are the road
probabilistically dependent if there
exists a directed active path from /
A to B or from B to A: O isire

Thorns on the road are correlated
with car damage because there is
a directed path from thorns to car
damage.

an
accident

\ car
damage
o p—"Y | | q) JFULBRIGH
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Markov condition: Implications

Variables A and B are
probabilistically dependent if there
exists a C such that there exists a
directed active path from C to A
and there exists a directed active ot tire
path from C to B:

Car damage is correlated with
noise because there is a directed
path from flat tire to both (flat tire

is a common cause of both). an
accident

O

noise

\ car
damage
ey —"Y'| q) ULBRIGH
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Markov condition: Implications

Variables A and B are probabilistically

dependent if there exists a D such

that D is observed (conditioned upon) glass on

and there exists a C such that A is the road

dependent on C and there exists a nails on
directed active path from C to D and the road
there exists an E such that B is O
dependent on E and there exists a flat tire
directed active path from E to D:

Nails on the road are correlated with

glass on the road given flat tire

because there is a directed path from

glass on the road to flat tire and from

nails on the road to flat tire and flat

tire is observed (conditioned upon). /
QS._:_‘.(“{:_[_;].'ULBRIGHT
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Markov condition:

Summary of implications

Variables A and B are probabilistically dependent if:

 there exists a directed active path from A to B or there
exists a directed active path from B to A

 there exists a C such that there exists a directed active
path from C to A and there exists a directed active path
fromCtoB

 there exists a D such that D is observed (conditioned
upon) and there exists a C such that A is dependent on C
and there exists a directed active path from C to D and
there exists an E such that B is dependent on E and there

exists a directed active path from E to D

Learning Bayesian Networks and Causal Discovery /
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Markov condition:

|

Conditional independence

Once we know all direct causes of an glass on thorns on
event E, the causes and effects of the road tr5road

those causes do not tell anything new nails on
about E and its successors. / thce)road
flat tire

(also known as “screening off”)

E.g., bumpy

« Glass and thorns on the road are feeling Czteering
independent of noise, bumpy an O problems
feeling, and steering problems O accide\rt noise
conditioned on flat tire. a knife \

* Noise, bumpy feeling, and steering O  car O
problems become independent Injury damage

conditioned on flat tire. /
D s ._ q) F%@L&T Learning Bayesian Networks and Causal Discovery
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Manipulation theorem [Spirtes, Glymour & Scheines 1993]:

Given an external intervention on a variable A in a causal
graph, we can derive the posterior probability distribution
over the entire graph by simply modifying the conditional
probability distribution of A.

L . : : th
If this intervention is strong Intervention o eos

enough to set A to a specific O of A
value, we can view this %

intervention as the only cause

of A and reflect this by A
removing all edges that are
coming into A. Nothing else In

\ the graph needs to be modified. effects of A /

DSL_ Y IIULBRIGHT | | |
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Intervention: Example

“Pumping up” the barometer

Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

weather

O
“pumpin&)up” ><

eliminates the weather as a cause

of the pressure indicated by the
barometer reading.

DS
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barometer
reading
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Intervention: Example

Making the tire flat with a knife
makes glass, thorns, nails, and
what-have-you irrelevant to flat
tire. The knife is the only cause
of flat tire.

\
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knife cut

@\»

a knife

bumpy
feeling

O

an
accide&t

.

O

injury
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Bayesian learning
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Software demo
Concluding remarks

flat tire

O

steering
O problems

noise

O

car
damage
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Experimentation

Empirical research is usually concerned with testing causal hypotheses.

Smoking and lung cancer are correlated.

Can we reduce the incidence of lung cancer by reducing smoking?
In other words: Is smoking a cause of lung cancer?

Each of the following causal structures is compatible
with the observed correlation

G = genetic factors G
S = smoking
C = lung cancer S

s g
\é/c i@
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Selection bias

Observing correlation is in general not enough to establish

causality.
genetic factors

. C,\_/Q;- lung cancer
smoking

* If we do not randomize, we run the danger that there are common

causes between smoking and lung cancer (for example genetic
factors).

* These common causes will make smoking and lung cancer
dependent.

* It may, in fact, also be the case that lung cancer causes smoking.

e This will also make them dependent without smoking causing
\ lung cancer.

DS

Ty S, e W N m% ———— Learning Bayesian Networks and Causal Discovery




' d

@ Motivation
Constraint-based learning
Bayesian learning

Example
Software demo

Expe rimentation Concluding remarks
genetic factors
coinQ asbestos
- lung cancer
smoking 9

* In a randomized experiment, coin becomes the only cause of
smoking.

« Smoking and lung cancer will be dependent only if there is a
causal influence from smoking to lung cancer.

o If Pr(C|S) # Pr(C|~S) then smoking is a cause of lung cancer.

» Asbestos will simply cause variability in lung cancer (add noise
to the observations).

But, can we really experiment in this domain?

DS
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Science by observation

“... Does smoking cause lung cancer or does
lung cancer cause smoking? ...”

Sir Ronald A. Fisher, a prominent statistician, father of experimental design

“... George Bush taking credit for the end of the cold
war is like a rooster taking credit for the daybreak ...”

Vice-president Al Gore towards Dan Quayle during their first debate, Fall 1992

Experimentation is not always possible.
We can do quite a lot by just observing.

Assumptions are crucial in both experimentation and
observation, although they are usually stronger in the latter.

New methods in causal discovery: squeezing data to the limits

\
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/Approaches to learning Bayesian networks

Constraint search-based learning

1993].

Bayesian learning

[Cooper & Herskovitz 1992; many others].

\
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|

Search the data for independence relations to give us a
clue about the causal relations [Spirtes, Glymour, Scheines

Search over the space of models and score each model
using the posterior probability of the model given the data

Learning Bayesian Networks and Causal Discovery /
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Constraint search-based learning

Principles:

« Search for independencies among variables in the database.

 Use the independencies in the data to infer (lack of) causal
links among the variables (given some basic assumptions).

Learning Bayesian Networks and Causal Discovery /
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/Constraint search-based learning

“Correlation does not imply causation”

by the “statistics mafia” ©.

four possible cases:

Ds._ (p FULBRIGHT
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Concluding remarks

True but only in limited settings and typically abused

If x and y are dependent, we have indeed at least
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/Constraint search-based learning

Not necessarily true in case of three variables:

x and z are dependent
y and z are dependent
x and y are independent
x and y are dependent given z

We can establish — :O 5

causality! -~

\ 'O
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Example
Foundations of causal discovery: Conciuding romarks
(1) The Causal Markov Condition

® @ ©
Jogge

® ©

Relates a causal graph to a probability
distribution.

Intuition:

In a causal graph, the parents of each node
“shields” the node from its ancestors.

Formally:

Theorem: A causal graph obeys the Markov condition if
and only if every d-separation in the graph corresponds

For any node X. in the graph, we have
P[X:|X’,Pa(X)] = P[X |Pa(Xi)],

where Pa(X,) are the parents of X. in the
graph, and X’ is any set of non-descendents
of X; in the graph.

to an independence in the probability distribution

Learning Bayesian Networks and Causal Discovery /
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ﬁl‘he Causal Markov Condition: d-separation

®—’®—’@\ Restatement of “the rules:”
/ « Each node is a “valve”

@ @ » v-structures are “off” by default
\‘ e Q » other nodes are “on” by default
» conditioning on a node flips its

é e state

e conditioning on a v-structure’s
descendants also flips its state.

Learning Bayesian Networks and Causal Discovery /

I(B,F) ? Yes
I(B,F | D)? No
I(B,F|C,D)? Yes

\
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Concluding remarks

/Foundations of causal discovery:
(2) Faithfulness condition

 Markov Condition:
d-separation = independence in data.

* Faithfulness Condition:
d-separation < independence in data.

In other words:
All independences in the data are structural,
i.e., are consequences of Markov condition.

Learning Bayesian Networks and Causal Discovery /
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Violations of faithfulness condition

Faithfulness assumption is more controversial.
While every scientist makes it in practice, it does
not need to hold.

Sexual
intercourse
with an
HIV carrier

Needle
sharing with
an HIV carrier

Given that HIV virus infection has not
taken place, needle sharing is independent
from intercourse.

Motivation

@ Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks
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Violations of faithfulness condition

¢ Stay Up Before an Exam
es B0%

[Ho 20%| ]

O Learn More
Yes65%

[N 2% |1

¢ Exam Performance

Good 50%
Poor 0% |

The effect of staying up late before the exam on the
exam performance may happen to be zero:

being tired may cancel out the effect of more knowledge.
But is it likely?

ecision Systerms Laboratory
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Equivalence criterion

Two graphs are statistically indistinguishable
iff they have the same adjacencies and the same
“v-structures”.

l | I J
Statistically Statistically

\ indistinguishable unique /
D S ._ q) F%T Learning Bayesian Networks and Causal Discovery
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Concluding remarks

All possible networks ...

O
OO

e

O

0

O

OO
O

Oo-0O
O

§o
o

R
R

\
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... can be divided into equivalence classes
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Causal model search

1. Start with data.

2. Find conditional independencies in the data.

3. Infer which causal structures could have
given rise to these independencies.

\DSl_(PFULBR'GHT — | /
NALF m% Learning Bayesian Networks and Causal Discovery
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/Theorems useful in search

Theorem 1

set) of the other variables.

Theorem 2

\
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There is no edge between X and Y if and only if X and
Y are independent given any subset (including the null

If X—Y — Z, X and Z are not adjacent, and X and Z are
independent given some set W, then X—»Y«Z if and
only if W does not contain Y.

Learning Bayesian Networks and Causal Discovery /
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PC al or. m Concluding remarks
gorith

Input:
a set of conditional independencies
Output:

a “pattern” which represents a Markov equivalence
class of causally sufficient causal models.

Learning Bayesian Networks and Causal Discovery /
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Software demo
. Concluding remarks
PC algorithm (sketch)

DS P fULBReH]

Decision Systerms Laboratory

Step 0:
Begin with a complete undirected graph.
Step 1 (Find adjacencies):

For each pair of variables <X,Y> if X and Y are independent
g(ijven some subset of the other variables, remove the X-Y
edge.

Step 2: (Find v-structures):

For each triple X-Y-Z, with no edge between X and Z, if X and Z
are independent given some set not containing Y, then orient
X-Y-Z as X—>YZ.

Step 3 (Avoid new v-structures and cycles):

— if X=>Y—Z, but there is no edge between X and Z, then orient
Y-Z as Y—Z.

— if X—Z, and there is already a directed path from X to Z, then

orient X — Z as X—Z.
Learning Bayesian Networks and Causal Discovery /
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/PC algorithm: Example

Causal
Graph

AN

C

\

B

(0) Begin with

A
/ c
B

DS P fULBReH]
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Bayesian learning

Software demo
Concluding remarks

Motivation
@ Constraint-based learning
Example

|

Independencies entailed by
the Markov condition:

I(A,B)
I(A,D | B,C)

(1) From A 1L B, remove A—B

ANT—

C

S

Learning Bayesian Networks and Causal Discovery
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/PC algorithm: Example

(1) From I(A,D | B,C), remove A—D

Orient C -D as C —D.

DS P fULBReH]
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(3) Avoid a new v-structure (A—>C«D),

Software demo

Motivation
@ Constraint-based learning
Bayesian learning
Example

Concluding remarks

(2) From I(A,B), orient
A-C-B as A—~C«B

A

C

o

D

(3) Avoid a cycle (B -C —D —B),
Orient B -D as B —D.

s /
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Bayesian learning
Example
Software demo

{ Motivation
@ Constraint-based learning
Concluding remarks

PC algorithm outputs a ‘pattern’, a kind of graph
containing directed (—) and undirected (—) edges
which represents a Markov equivalence class of

Models

— An undirected edge A-B in the ‘pattern’, indicates that
there is an edge between these variables in every graph

in the Markov equivalence class

— A directed edge A—B in the ‘pattern’ indicates that there
is an edge oriented A—B in every graph in the Markov

equivalence class
Learning Bayesian Networks and Causal Discovery /
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 Causal discovery is independent of the actual
distribution of the data.

 The only thing that we need is a test of (conditional)
independence.

 No problem with discrete data.

* In continuous case, we have a test of (conditional)
independence (partial correlation test) when the data
comes from multi-variate Normal distribution.

 Need to make the assumption that the data is multi-
variate Normal.

 The discovery algorithm turns out to be very robust to
this assumption [Voortman & Druzdzel, 2008].

\

Motivation
@ Constraint-based learning
Bayesian learning
Example
Software demo
- Concluding remarks
Continuous data
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Normality Concluding romarks
_
10%-
5%
40 - s0 &0 70 &0 .. 90

Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

DS
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Linearity Conclading remarks
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Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

DS
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/Elements of a search procedure

* A representation for the current state (a
network structure.)

A scoring function for each state (the
posterior probability).

A set of search operators.
— AddArc(X,Y)
— DelArc(X,Y)
— RevArc(X,Y)
A search heuristic (e.g., greedy search).

\
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Example
Software demo
Concluding remarks

Motivation
Constraint-based learning
@ Bayesian learning

AN
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. agm Concluding remarks
Posterior probability score

P(D|S)P(S)

P(S|D) = P(D)

«< P(D|S)P(S)

“Marginal likelihood” P(D|S):
* Given a database
 Assuming Dirichlet priors over parameters

LA D) Do+ Ni)

P19 =]111+ 11 o)

i=1 j=1 0( +NIJ) k=1

Learning Bayesian Networks and Causal Discovery /
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Bayesian learning
Example

Software demo

Motivation
/ [. Constraint-based Iearning]
Constraint-based learning: Open problems | ‘\———===

Pros:

« Efficient, O(n?) for sparse
graphs.

e Hidden variables can be

o “Older” technology, many
researchers do not seem to
be aware of it.

\
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discovered in a modest way.

Cons:

Discrete independence tests are
computationally intensive

= heuristic independence tests?
Missing data is difficult to deal with
— Bayesian independence test?

Learning Bayesian Networks and Causal Discovery /



\

' d

Software demo

/Bayesian learning: Open problems

Motivation
Constraint-based learning
@ Bayesian learning
Example
Concluding remarks

Pros:

 Missing data and hidden
variables are easy to deal
with (in principle).

* More flexible means of
specifying prior
knowledge.

« Many open research
questions!

DS P fULBReH]
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« Essentially intractable.
« Search heuristics (most efficient)

 Monte-Carlo techniques (more

Cons:

typically lead to local maxima.

accurate) are very slow for most
interesting problems.
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Motivation
Constraint-based learning
Bayesian learning
@ Example
Software demo
" . Concluding remarks
Example application

e Student retention in US colleges.

« Large problem for US colleges.

» Correctly predicted that the main causal
factor in low student retention is the quality
of incoming students.

[Druzdzel & Glymour, 1994]
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Motivation
Constraint-based learning
Bayesian learning
@® Example
Software demo
S h I I Concluding remarks

Scaling up -- especially Monte Carlo
techniques.

Practically dealing with hidden variables --
unsupervised classification.

Applying these techniques to real data and real
problems.

Hybrid techniques: Constraint-based +
Bayesian (e.g., Dash & Druzdzel, 1999).

Learning causal graphs in time-dependent
domains (Dash & Druzdzel, 2002).

Learning causal graphs and causal
manipulation (Dash & Druzdzel, 2002).

Learning dynamic causal graphs from time
series data (Voortman, Dash & Druzdzel

\\ 2010) /////
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Motivation
Constraint-based learning
Bayesian learning
Example
@ Software demo
O u r s Oftwa re Concluding remarks

A developer’s environment for graphical decision models

(http://genie.sis.pitt.edul/). Support for model
building: ImaGeNIe
: _ ) Diagnosis:
Qualitative| |Learning and discovery ’, Diagnosis
interface: module: SMiner . T
QGCNIC ..'... :

Model developer module: GeNIe "} ~sui—

Implemented in Visual C++ in
Windows environment.

Wrappers: SMILE.NET® jSMILE®,
Pocket SMILE®

Allow SMILE® to be accessed from
applications other than C++compiler

Reasoning engine: SMILE® (Structural
Modeling, Inference, and Learning Engine).

A platform independent library of C++
classes for graphic

Learning Bayesian Networks and Causal Discovery
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Motivation
Constraint-based learning
Bayesian learning
Example

@ Software demo
Concluding remarks

Demonstration
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{ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. @ Concluding remarks
Concluding remarks

 Observation is a valid scientific method

 Observation allows often to restrict the class of possible
causal structures that could have generated the data.

 Learning Bayesian networks/causal graphs is very exciting:
It is a different and powerful way of doing science.

 There is a rich assortment of unsolved problems in causal
discovery / learning Bayesian networks, both practical and
theoretical.

« We are actively pursuing learning in my research group (see
learning module of GeNIe at http://genie.sis.pitt.edu/).

Learning Bayesian Networks and Causal Discovery /
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Thank you
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