
Stochastic Strand Algebra

452009-05-08Luca Cardelli 452009-05-08 452009-05-08Luca Cardelli

Stochastic Strand Algebra

● Unbounded populations P* are meaningless because one cannot compute

their stochastic impact. Hence stochastic strand algebra �r drops P*:

● Instead of unbounded populations P* should think of populations of size k,

Pk, which of course we already have from iterated parallel composition.

P ::= x ⋮ [x1,..,xn].[x’1,..,x’m] ⋮ 0 ⋮ P|P n≥1, m≥0

462009-05-08Luca Cardelli 462009-05-08 462009-05-08Luca Cardelli

● Moreover, each gate with n inputs has a fixed rate gn (collapsing all gate

parameters into one).

Propensity

● Given a global state P what is the propensity (‘speed’) of each possible

next reaction? It is:

(P choose (x1 | … | xn | [x1,…,xn].[y1,…,ym])) × gn

● That is, it is the number of ways of choosing from P an n-ary gate and its

n inputs, multiplied by the gate rate gn.

o If P = xn|ym|([x,y].z)p with x≠y, the propensity of the next x|y|[x,y].z → z

reaction is n×m×p×g .

472009-05-08Luca Cardelli 472009-05-08 472009-05-08Luca Cardelli

reaction is n×m×p×g2.

o If P = xn|([x,x].z)p, the propensity of the next x|x|[x,x].z → z reaction

is (n choose 2)×p×g2 = n×(n-1)/2×p×g2.

o N.B. we have the factor r = n×(n-1)/2 here. For large n we have n×(n-1)~ n2 in terms of reaction

order. In terms of reaction rate, note that in chemistry the (measured, macroscopic) mass action

rate k = 2r is always twice the underlying (actual, microscopic) stochastic rate k for reactions of the

form x+x → …. Hence we have an overall macroscopic reaction speed of ~(k×g2)×n2×p which, further

converting the molecule counts to concentrations in a volume, gives us back the law of mass action.

● For (unary) curried gates, the propensity is:

(P choose (x0 | x0.[x1,…,xn].[y1,…,ym])) × g1

Global Transition

● A global transition P →r P’ of a global state P to a next global state P’

with propensity r is then defined as:

P →(P choose (x1 | … | xn | [x1,…,xn].[y1,…,ym])) × gn

(P \ (x1 | … | xn | [x1,…,xn].[y1,…,ym])) | y1 | … | ym

where \ is multiset difference. (Similarly for curried gates.)

482009-05-08Luca Cardelli 482009-05-08 482009-05-08Luca Cardelli

Continuous Time Markov Chain

● From the global transitions of a global state P, and of all its successive

states, we can build a CTMC for any P.

P = x3 | x.y2 | x.z

z | x2 | x.y2

y | x2 | x.y | x.z

6g1

3g1

2g

2g1

y | z | x | x.y4g1

g1

y2 | z

g1

(x.z)

(x.y)

(x.y)

(x.z)

(x.y)

(x.y)

(x.z)

492009-05-08Luca Cardelli 492009-05-08 492009-05-08Luca Cardelli

● From this we can extract the standard matrix representation of CTMCs.

● We can also extract a DTMC (state transition probabilities), but the CMTC

has more information: the expected holding time in each state (1/Σexit-

propensities), i.e. the kinetics of the system.

● This is the semantics of Stochastic Strand Algebra.

y | x2 | x.y | x.z

y2 | x | x.z

2g1

g1

Buffered Populations

● We have given up P*, so how do we do recursion?

● Consider instead populations of constant size k, P=k.

● Take for example P = x.y; we have that

x | Pk →k×g1 y | Pk-1 (a global transition)

502009-05-08Luca Cardelli 502009-05-08 502009-05-08Luca Cardelli

● We want to find a system P=k such that:

x | P=k →k×g1 y | P=k

o it should evolve at rate k (×g1) like P
k

o but it should not get depleted in the process

The Buffer Population

● These are definable (to arbitrary approximation) by using a bigger buffer

population to replenish the (pseudo-)constant population.

● For P = x.y (for example) define:

P=k ≝ (x.[y.Z])k | (Z.x.[y.Z])BIG for a fresh Z

e.g. BIG = 10000×k

512009-05-08Luca Cardelli 512009-05-08 512009-05-08Luca Cardelli

≝

Here BIG is an example of a large-enough buffer: it ensures that reactions on

Z are much faster than reactions on x by mass action. We can make Z

reactions arbitrarily fast, without affecting x reactions.

Z.x.[y,Z] is a curried gates. The construction can be done also without curried

gates, but then it requires balancing the rates of gates with different

numbers of inputs.

Buffered Populations in Action

● Now we provide an input:

x | P=k = x | (x.[y.Z])k | (Z.x.[y.Z])BIG

→k×g1 y | Z | (x.[y.Z])k-1 | (Z.x.[y.Z])BIG

→BIG×g1 y | x.[y.Z] | (x.[y.Z])k-1 | (Z.x.[y.Z])BIG-1

= y | (x.[y.Z])k | (Z.x.[y.Z])BIG-1

with →k×g1→BIG×g1 ~ →k×g1

522009-05-08Luca Cardelli 522009-05-08 522009-05-08Luca Cardelli

with →k×g1→BIG×g1 ~ →k×g1

and (x.[y.Z])k|(Z.x.[y.Z])BIG-1 ~ P=k

● Hence, the propensities in P=k are (approximately) the same as in Pk:

x | P=k →~k×g1 y | ~P=k

but P=k does not get depleted (approximately).

Properties of Buffered Populations

● Hence, P=k is the stochastic equivalent of P*:

P=k ~ P | P=k

o We can make the approximation as good as we want by increasing the buffer.

o We can ‘top up’ the buffers periodically, without affecting the rest of the

system (only the arbitrarily fast reaction on Z).

532009-05-08Luca Cardelli 532009-05-08 532009-05-08Luca Cardelli

system (only the arbitrarily fast reaction on Z).

o By topping-up the buffers, we can support arbitrarily long computations and

recursion.

o Afterthought: it seems it may be true that (P=k)=k ~ P=k; I have not checked the

details. This would be nice, but on the other hand it would mean that there is

nothing to gain in building buffers of buffers. Maybe there are also different

encodings of P=k with different properties.

Chemistry (FSRN) to Strand Algebra

● With the help of P=k, we can now encode stochastic formalisms, like

Finite Stochastic Reaction Networks (finite sets of chemical reactions

with stochastic rates) in Strand Algebra (and DNA).

o [Soloveichik et al.] DNA as a Universal Substrate for Chemical Kinetics: how

to implement an arbitrary set of chemical reactions by engineering chemical

species (as DNA strands) that obey the reactions.

● For a stochastic reaction rate r of an n-ary reaction we use a constant-

size population of size r/g (assume r>>g ; otherwise scale up the rates to

542009-05-08Luca Cardelli 542009-05-08 542009-05-08Luca Cardelli

size population of size r/gn (assume r>>gn; otherwise scale up the rates to

obtain large-enough populations):

1) A →r B1 + … + Bm ⇒ (A.[B1,…,Bm])=r/g1

2) A1+A2 →r B1 + … + Bm ⇒ ([A1,A2].[B1,…,Bm])=r/g2

3) A+A →r B1 + … + Bm ⇒ ([A,A].[B1,…,Bm])=r/g2

● The propensities match:

1) P = An: (P choose A)×r = n×r = (P choose A)×r/g1×g1

2) P = A1
n+A2

m: (P choose A1,A2)×r = n×m×r = (P choose A1,A2)×r/g2×g2

3) P = An: (P choose A,A)×r = n×(n-1)/2×r = (P choose A,A)×r/g2×g2

Interacting Automata to Strand Algebra

A

B

!ar

?ar ?bs

!brs

Groupies

A = !ar.A ⊕ ?bs.B

B = !bs.B ⊕ ?ar.A

Strand(Groupies)

on ar: ([B,A].[A,A])=r/g2 |

on bs: ([A,B].[B,B])=s/g2

Strand(E) = Parallel(⟪…⟫ means multisets

⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ⟫

⟪ ⟫

Map each possible interaction to a Join

552009-05-08Luca Cardelli 552009-05-08 552009-05-08Luca Cardelli

A

B

!ar

?bs

!bs

?ar

Celebrities

A = !ar.A ⊕ ?ar.B

B = !bs.B ⊕ ?bs.A

Strand(Celebrities)

on ar: ([A,A].[B,A])=2r/g2 |

on bs: ([B,B].[A,B])=2s/g2

⟪ ⟫

⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ([X,Y].[P,Q])=r/g2 s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !c;Q ⟫ ∪

⟪ ([X,X].[P,Q])=2r/g2 s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !c;Q ⟫)

Global Transitions and Propensities Match

Groupies

A = !ar.A ⊕ ?bs.B

B = !bs.B ⊕ ?ar.A

(on ar) An|Bm →n×m×r An+1|Bm-1

(on bs) An|Bm →n×m×s An-1|Bm+1

Strand(Groupies)

P = ([B,A].[A,A])=r/g2 |

([A,B].[B,B])=s/g2

An|Bm|P →~n×m×r/g2×g2 An+1|Bm-1|~P

An|Bm|P →~n×m×s/g2×g2 An-1|Bm+1|~P

562009-05-08Luca Cardelli 562009-05-08 562009-05-08Luca Cardelli

Celebrities

A = !ar.A ⊕ ?ar.B

B = !bs.B ⊕ ?bs.A

(on ar) An|Bm →n×(n-1)×r An-1|Bm+1

(on bs) An|Bm →m×(m-1)×s An+1|Bm-1

where there are two
symmetric ?/! ways for A
to interact with A, hence
the propensity is 2×(n
choose 2)×r = n×(n-1)×r.

Strand(Celebrities)

P = ([A,A].[B,A])=2r/g2 |

([B,B].[A,B])=2s/g2

An|Bm|P →~n×(n-1)/2×2r/g2×g2 An-1|Bm+1|~P

An|Bm|P →~m×(m-1)/2×2s/g2×g2 An+1|Bm-1|~P

Oscillator

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new

c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B

All translations preserve

stochastic semantics (to some

572009-05-08Luca Cardelli 572009-05-08 572009-05-08Luca Cardelli

A = !a(s);A ⊕ ?b(s);B

B = !b(s);B ⊕ ?c(s);C

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B

B+C →s C+C

C+A →s A+A

([A,B].[B,B])=s/g2 |

([B,C].[C,C])=s/g2 |

([C,A].[A,A])=s/g2

stochastic semantics (to some

arbitrary approximation).

DNA

Summary

● Stochastic Strand Algebra can be obtained by restricting to finite

populations and adding gate rates.

o CTMC semantics.

o Based on propensities of global transitions.

● A notion of buffered (constant) populations can be defined (to arbitrary

approximation).

582009-05-08Luca Cardelli 582009-05-08 582009-05-08Luca Cardelli

● That can be used to embed stochastic formalisms into Strand Algebra

(and DNA), while preserving the stochastic semantics:

o Stochastic Chemistry

o (Stochastic) Interacting Automata

Nested Strand Algebra

592009-05-08Luca Cardelli 592009-05-08 592009-05-08Luca Cardelli

Motivation

● Strand Algebra is pretty low-level: it is combinatorial (like assembly

language).

● We want to demonstrate compilation of high(er) level languages to DNA.

● We consider an expression-based language, and we compile it to Strand

Algebra, seen now as an intermediate (assembly) language.

602009-05-08Luca Cardelli 602009-05-08 602009-05-08Luca Cardelli

Nested Expressions

● A sequence x1.x2.x3 is not in the syntax of the combinatorial algebra.

● Still, it can be defined as:

o x1.x2.x3 = x1.x0 | [x0,x2].x3

o where x0 can be chosen, e.g., as a fixed function of x1,x2

● The nested strand algebra generalizes this idea

o Operations can be nested.

612009-05-08Luca Cardelli 612009-05-08 612009-05-08Luca Cardelli

o Operations can be nested.

o The main change is allowing arbitrary terms after a gate input.

Nested Strand Algebra nnnn����

P ::= x ⋮ [x1,..,xn].P ⋮ 0 ⋮ P|P ⋮ P* n≥1

We now allow free cascading of operations: x1.[x2,x3].(x4|x5)

And we also allow triggering whole populations: x.P*

This syntax is a bit odd though: x1.x2.x3 has x2 is an input,

while in x1.x2 has x2 as an output. This gets confusing.

622009-05-08Luca Cardelli 622009-05-08 622009-05-08Luca Cardelli

Embedding of � in n�:

[x1|..|xn].[y1|..|ym] becomes ?[x1|..|xn].![y1|..|ym].0

while in x1.x2 has x2 as an output. This gets confusing.

We are going to better distinguish inputs form output,

further generalizing the nested algebra:

P ::= x ⋮ ?[x1,..,xn].P ⋮ ![x1,..,xn].P ⋮ 0 ⋮ P|P ⋮ P* n≥1

Reduction Relation for nnnn����

?[x1,..,xn].P | x1 | .. | xn → P Input Gate

![x1,..,xn].P → x1 | .. | xn | P Output Gate

The structural congruence relation is exactly the same

(we shall not bother with congruence under prefix).

The reduction relation changes only in the Gate rule:

632009-05-08Luca Cardelli 632009-05-08 632009-05-08Luca Cardelli

P → P’ ⇒ P | P” → P’| P” Diffusion

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

nnnn���� to ���� Unnest Algorithm

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, ?[x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, ![x1,..,xn].P) = X.[x1,..,xn,Y]| U(Y,P) for fresh Y

U(X, 0) = X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

642009-05-08Luca Cardelli 642009-05-08 642009-05-08Luca Cardelli

In the inner loop U(X,P), the signal X triggers the activation of the

translation of P.

The ‘freshness’ side conditions are formalized by letting U(P) have an

additional parameter that is an infinite sequence of fresh signals

(distinct signals not occurring in P), which are consumed during the

translation.

nnnn���� to ���� Unnest Algorithm (more formal)

Let � be an infinite lists of distinct strands,

and 	 be the set of such �’s.

�i isthe i-th strand in the list,

�≥I is the list starting at the i-th position of �,

evn(�) is the even elements of �,

odd(�) is the odd elements.

Let 	P be the set of those �∈	 that

do not contain any strand that occurs in P.

Let P∈n� and �∈	P,

�

U(�0,P)� produces a gate that is triggered by �0.

652009-05-08Luca Cardelli 652009-05-08 652009-05-08Luca Cardelli

Let P∈n� and �∈	P,

let X indicate strands in �

U(�0,P)�≥1
produces a gate that is triggered by �0.

U(P)� = �0 | U(�0,P)�≥1

U(X, x)� = X.x

U(X, ?[x1,..,xn].P)� = [X,x1,..,xn].�0 | U(�0,P)�≥1

U(X, ![x1,..,xn].P)� = X.[x1,..,xn,�0] | U(�0,P)�≥1

U(X, 0) = X.[]

U(X, P’|P”) = X.[�0,�1] | U(�0,P’)evn(�≥2)
| U(�1,P”)odd(�≥2)

U(X, P*) = (X.[�0,X] | U(�0,P)�≥1
)*

Solving Recursive Equations

In the nested algebra we can more easily solve recursive equations,

because we can always “add one more prefix”.

To solve the following equations:

X = ?x1.X | !x2.Y

Y = ?x3.(X | Y)

662009-05-08Luca Cardelli 662009-05-08 662009-05-08Luca Cardelli

write:

(?X. (?x1.X | !x2.Y))* |

(?Y. ?x3.(X | Y))*

Triggering Populations

We can nest populations, and hence cause a single signal to release a
whole population:

U(?x.P*) = X | [X,x].Z | (Z.[Y,Z] | U(Y,P))*

x | U(?x.P*) → Z | (Z.[Y,Z] | U(Y,P))*
≡ Z | Z.[Y,Z] | U(Y,P) | (Z.[Y,Z] | U(Y,P))*
→ Y | U(Y,P) | Z | (Z.[Y,Z] | U(Y,P))*
…

672009-05-08Luca Cardelli 672009-05-08 672009-05-08Luca Cardelli

This causes a linear production of U(P); for an exponential production
just change U(X, P*) = (X.[Y,X,X] | U(Y,P))*

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, ?[x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, ![x1,..,xn].P) = X.[x1,..,xn,Y]| U(Y,P) for fresh Y

U(X, 0) = X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

Exercise 6: Wet Vending Machine Controller

A coffee vending machine controller, Vend, accepts two coins for coffee;
an ok is given after the first coin and then either a second coin (for
coffee) or an abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Exercise: compile that to the Combinatorial Strand Algebra; if you do it
by the U(P) algorithm you can then heavily hand-optimize it.

682009-05-08Luca Cardelli 682009-05-08 682009-05-08Luca Cardelli

by the U(P) algorithm you can then heavily hand-optimize it.

Each Vend iteration spawns two branches, Coffee and Refund, waiting
for either coin or abort. The branch not taken in the mutual exclusion is
left behind; this could skew the system towards one population of
branches. Therefore, when the Coffee branch is chosen and the system
is reset to Vend, we also spawn another Coffee branch to dynamically
balance the Refund branch that was not chosen; conversely for Refund.

Standard questions can be asked: what happens if somebody inserts
three coins very quickly? Or somebody presses refund twice? Etc.

Summary

● The Nested Strand Algebra is a ‘high level’ (expression based) language.

● It can be compiled to the basic Strand Algebra by a simple algorithm.

● It is expressive enough to program classical controllers fairly

conveniently.

● And again, we can get DNA out of it.

692009-05-08Luca Cardelli 692009-05-08 692009-05-08Luca Cardelli

● And again, we can get DNA out of it.

Global Recap

702009-05-08Luca Cardelli 702009-05-08 702009-05-08Luca Cardelli

Molecules as Automata

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

712009-05-08Luca Cardelli 712009-05-08 712009-05-08Luca Cardelli

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Automata as Molecules

Discrete
Chemistry

Interacting
Automata

Strand
Algebra

Discussed this week

Not discussed, but exists

Unclear

Join encodings cause

non-termination

Just follow the strand

displacement diagrams

Verification of DNA gates

Higher-level
languages Nested Strand Algebra

722009-05-08Luca Cardelli 722009-05-08 722009-05-08Luca Cardelli

DNA

Soloveichik et al.

Verification of DNA gates

(in some process algebra)

Verification of DNA gates:

prove that the DNA signal and a gate structures correctly

implement the Strand Algebra reduction semantics in all

possible contexts

Automata vs. Molecules

=
Continuous
Chemistry

Discrete
Chemistry

Interacting
Automata

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

732009-05-08Luca Cardelli 732009-05-08 732009-05-08Luca Cardelli

=CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

CTMC =

Chemistry Automata

Strand
Algebra

DNA

Open Problems/Questions

742009-05-08Luca Cardelli 742009-05-08 742009-05-08Luca Cardelli

Implementing Choice in DNA

● This would allow compiling interacting automata to strand algebra

without going through the n2-expansion of the chemical translation.

● This is hard.

● Particularly because we don’t have a restriction operator (in strand

algebra); otherwise there are some classical techniques to compile some

π-calculus choice operators to parallel compositions.

● Note that there is no restriction operator in DNA, unless maybe one

throws in the whole DNA transcription apparatus. Therefore, many

752009-05-08Luca Cardelli 752009-05-08 752009-05-08Luca Cardelli

throws in the whole DNA transcription apparatus. Therefore, many

encodings, particularly when replicated, tend to self-interfere.

Compiling Join to Choice

● I.e., compiling strand algebra to interacting automata.

● This should be just an exercise.

● Trivial if one admits divergence (by using the same “reversible binding”

trick as in the DNA implementation of join).

● But how can one compile join to choice in a termination-preserving way?

762009-05-08Luca Cardelli 762009-05-08 762009-05-08Luca Cardelli

Bib

For possible DNA implementations of the strand algebra see:

DNA as a Universal Substrate for Chemical Kinetics (Extended Abstract)

David Soloveichik, Georg Seelig, and Erik Winfree

http://www.dna.caltech.edu/Papers/DNA_for_CRNs_preprint_DNA14.pdf

(The primitives used here are x.y, x.[y,z], and [x,y].z).

and

772009-05-08Luca Cardelli 772009-05-08 772009-05-08Luca Cardelli

Programming biomolecular self-assembly pathways. P. Yin, H.M.T. Choi, C.R.

Calvert, N.A. Pierce Nature, 451:318-322, 2008.

(The primitives used here are x.y and x.[y,z], although “dissociation” is also

used to great effect, and this is not easily expressible.)

and

Strand Algebras for DNA Computing. L. Cardelli. Proc. DNA Computing 15.

