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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

How do we implement an arbitrary process?

How do we implement an arbitrary chemical system? 

(how do we then implement the chemical species?)



Automata to Molecules

● There are many schemas to compile automata to molecules

o But most (all?) are about compiling a single automaton (e.g. an FSA).

● Interacting Automata can be compiled to chemical reactions [TCS’08].

o Are concurrent and population based (a subset of CCS).

o The translation has an n2 blowup (means automata are “more compact”).

o But how does one engineer the necessary molecules?

● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].
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● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

o The translation is stochastically “almost” faithful.

o Which can be seen as a defect of the translation, if you are a chemist.

● Hence Interacting Automata can be compiled to DNA.

o Again, stochastically this is “almost” faithful as a single transition may need to be 

implemented with two transitions, which have a different distribution.

● Direct Compilation of Interacting Automata to DNA.

o We can more simply go directly from Interacting Automata to DNA.

o In doing so, we want to preserve the stochastic semantics (rates).



DNA Computing

● Early DNA Computing

o Demonstrated computation by DNA hybridization [Adelman].

o Why DNA? Widely available mature technology.

o Massively concurrent (but still not enough for NP-complete problems).

o Slow and awkward (manual cycling).

● New Focus

o Not going to compete with Intel in speed (hours … days).
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o Not going to compete with Intel in speed (hours … days).

o But can interface with biological systems!

o For detection and intervention in live organisms.

● New Paradigm

o Autonomous DNA computation (mix-and-go) [Yurke&Mills].

o Output readout by fluorescence or atomic microscopy, in vitro.

o Or by influencing cellular mechanisms in vivo [Shapiro survey].



Computation by 
DNA Strand Displacement

52009-05-07Luca Cardelli 52009-05-07 52009-05-07Luca Cardelli



ACGT

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

Sequence of Base Pairs
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GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Hence DNA is a string over a 4-letter ACGT alphabet
Human genome : ~3 billion base pairs 

= 750 Megabytes (since 1 byte encodes 4 base pairs)

= 1 movie download!



DNA Double Helix
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Benzopyrene

By Richard Wheeler (Zephyris) 2007. Solution structure of 

a trans-opened (10S)-dA adduct of +)-(7S,8R,9S,10R)-7,8-

dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene

in a DNA duplex. Wikimedia Commons.

(What happens when you smoke)



Watson-Crick Duality

Equal Single Strands

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

G - C

T - A
Affinity

X⊥⊥ = X 

3’ end
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Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

all written 

from 5’ to 3’



Hybridization
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Hybridization is also called annealing; denaturation is also 

called melting.

The direction of the reaction (or in general the equilibrium 

between the two states) is determined by a number of 

factors, e.g. temperature.

We assume we are in conditions that favor hybridization 

beyond a certain length of matching region. 



Branch Migration

branching 

point
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The branching point moves left and right by a 

random walk. Until it reaches an end point.



Short and Long Segments
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Strand Displacement Reaction

toehold Irreversible
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blocked

Reversible! 
because the random walk is ‘reflected’ by the blockage

Partial

Match

Irreversible match is determined by the toehold plus the branch migration region. 

That is, the toehold is a cache for the full address. The toehold must be short enough to 

guarantee reversible binding, but the branch migration region is practically unlimited.

This means that the address space is unlimited.



Toehold Exchange Reaction

Reversible
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Signal Strand

xh = history
xt = toehold
xb = binding

D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal 
Substrate for Chemical Kinetics. Proc. DNA14.

x

(We work with a simpler version of their signal stands.)
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xb = binding

The history xh is not part of signal recognition: strands with 
different histories should behave the same. Hence, x denotes 
an equivalence class of strands with different histories.

The combination xt,xb identifies the signal x.

If x≠y then x and y⊥ are not supposed to hybridize.



Signals and Gates

● Signals “x” are always positive strands

● Gates “x.y” always have a negative strand toehold and backbone.

o that is, the input “x” is implicitly perp’ed

o and the output “y” is another positive signal

● This separation helps the DNA realization, as one can use 3-letter 

alphabets (ATC/ATG) for each strand, minimizing secondary structure and 
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alphabets (ATC/ATG) for each strand, minimizing secondary structure and 

entanglement.

● This way, by the way, we appear to give up Turing completeness, which is 

possible by freely using positive and negative strands. (Turing 

completeness has been demonstrated in DNA tiling systems.)

● (It is not clear how to achieve Turing completeness based on this 

signal/gate structure.)



Inert Systems

A system is considered inert (terminated) if it has no free toeholds.
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x.[] Annihilator Gate
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This is just the strand displacement reaction, but seen as a 

gate absorbing a signal x and producing nothing (0 = inert).

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).



x.y Transducer Gate
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Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



x.[y,z] Fork Gate
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Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



x.[x,x] Fork Gate
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Autocatalyst



Adapter (a non-Gate)

Consider the reversible ‘first half’ of the transducer, 

which works by toehold exchange:
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This has an interesting function: it adapts an x signal to a y signal:

if x is present then both x and y are available by reversibility

if y is consumed, then x is consumed.

If a gate produces an x and another gate expects a y, then we can (perhaps) use an 

adapter to connect them. Note that a full x to y transducer would not work as well as 

an adapter, because it would always remove x even if nobody wants y.



Non-gates

● However, the adapter is not a gate:

o The inverse reaction works only for y’s with xb history. Gates must work on 

equivalence classes of signals, for any history. There is in fact no way to write 

the adapter as a gate reaction: x | adapt(x,y) → y | ?. 

o When y is consumed it leaves behind a non-inert components which 

eventually reduces the availability of x by speeding up the reverse reaction. 

These non-inert components should be removed.
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These non-inert components should be removed.

o Since both x and y are public signals, there is a possibility that some other 

part of the system may produce a y signal with xb history, interfering with this 

adapter (slowing it down, and removing y’s from somewhere else).

o A proper adapter gate is instead (x.y | y.x), assuming a population of them.

● Although not a gate, an adapter can be used as part of a larger proper 

gate, like the Transducer, which:

o works on equivalence classes of signals

o does not leave active garbage around

o but still admits interference on y (a alternative transducer is coming up).



Another Architecture

● We now start working with a slightly different gate structure.

o The order of Trigger and Output is swapped.

● This is slightly more complex.

o It requires a ‘garbage collection’ step.

● But it generalizes better to more complex gates.

o Removes the worry about interference on x :y . 
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o Removes the worry about interference on xb:yt. 

o Join gates require garbage collection anyway.

● This results in a uniform structure for all gates.



x.y Transducer Gate

G ,G ,C (gate backbone, trigger, collector) form the transducer.
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Gb,Gt,C1 (gate backbone, trigger, collector) form the transducer.

We need to collect the xb:a strand to end up with an inert system.

If we do not collect it, it accumulates and slows down further 

transductions by pushing the reversible reaction to the left.

No problem with x.x:



x.[y,z] Fork Gate

The triggering is now more uniform: all the outputs are released 

together.
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together.

This fork structure (although slightly more complex than the 

earlier fork) generalizes smoothly to multiple inputs as well,

because in that case we cannot avoid a garbage collection phase.

No problem with x.[x,x]:



Exercise 3: x.[y,z] | x.[y,w] Interference
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● Suppose we ‘forgot’ to take a,b fresh, so they are shared by the two 

gates. Something goes horribly wrong from these initial conditions:

x | x.[y,z] | x | x.[y,w]

where x.[y,z] = G1b,G1t and x.[y,w] = G2b,G2t

● What goes wrong?



[x,y].z Join Gate (function)

Basic function garbage!!

272009-05-07Luca Cardelli 272009-05-07 272009-05-07Luca Cardelli

Join can be implemented by a ‘reversible-AND gate’ taking two sequential inputs 

where the first one is reversible (Soloveichik Fig.3), so that x is not actually 

absorbed until y is found. The ‘garbage’ r1 must not be collected until y is found: 

this is signaled by the release of r2.



[x,y].z Join Gate (collection)

Garbage Collection
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Garbage collection of r1 is needed for join to work well. This is done by another 

reversible-AND between r1 and r2, triggered by the release of r2. This second 

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as 

we know by construction that both inputs r1,r2 are available and we need not wait to 

revert their bindings. 

The extra intermediate c,d segments separate the r1 binding from the r2 binding. 

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!



[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym
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x.H(y) Curried Gates

Gates that return gates:
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For example, x.y.z: This means we can have gates of the form:

G   ::= [x1,..,xn].[x’1,..,x’m]  ⋮

[x1,..,xn].G         

n≥1, m≥0



Exercise 4: x.y.z | [x,y].w Interference

Consider curried gates without the a,b segments (example below): instead of 

releasing xb,a and b,yt segments, they would release xb,yt.

But that is exactly the strand r1 of an [x,y].w gate: the strand that reverts the x 

input. This definitely causes an interference between x.y.z and [x,y].w.

Find a situation where the presence (x.y.z as below) or absence (x.y.z as in 

previous slide) of this interference causes different outcomes.

Hint: it changes outcome probability.

[David Soloveichik]
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Hint: it changes outcome probability.

Note: the a,b segments prevent the

interference.



Summary

● DNA strand displacement technology provides a way of implementing 

abstract signal transducer networks.

● Fork gates and Join gates are the main components.

● How powerful it this style of computation?
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Combinatorial Strand Algebra
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Formalizing a Process Algebra

● A term syntax (almost always including parallel composition):

o P ::= …  ⋮ P|P  ⋮ …

● A structural congruence relation (chemical mixing):

o P ≡ Q (e.g. commutative monoid rules of ‘|’)

● A reduction relation (chemical reactions):

o P  → Q
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o P  → Q

● Standard rules to connect the two, which have a ‘chemical’ meaning:

o ‘Dilution’: P  → Q    ⇒ P | R  → Q | R

o ‘Well-mixing’: P ≡ P’, P’ → Q’, Q’ ≡ Q    ⇒ P → Q

● Various equivalences (e.g. bisimulation) derived from the above.

● Algebraic laws proved (not taken as axioms) from the equivalences.



Strand Algebra ����

P   ::=   x  ⋮ [x1,..,xn].[x’1,..,x’m]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

No compound expressions except for parallel composition P|P and populations P*.

Hence this is a combinator-based (“assembly”) language.

Here x is a signal, and [..].[..] is a gate:

x is a strand

≝
≝
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x1.x2 ≝ [x1].[x2] is a sequence gate
x.[x1,..,xm] ≝ [x].[x1,..,xn] is a fork gate
[x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

0 is inert
P|P is parallel composition of signals and gates
P* is a population (multiset) of signals and gates

Note: x.P* is not in the syntax: populations are only top-level.
C.f.: Petri net tokens (strands) and transitions (gates). 
However, here both signals and gates are consumed by interaction.



Structural Congruence for ����

P ≡ P equivalence

P ≡ P’  ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P”  ⇒ P ≡ P”

P ≡ P’  ⇒ P|P” ≡ P’|P” congruence

P ≡ P’  ⇒ P* ≡ P’*

P | 0  ≡ P diffusion

P | P’  ≡ P’ | P
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P | P’  ≡ P’ | P

P | (P’ | P”)  ≡ (P | P’) | P”

P*  ≡ P* | P population

0*  ≡ 0

(P | P’)*  ≡ P* | P’*

P**  ≡ P*



Reduction for ����

x1 | .. | xn | [x1,..,xn].[x1’,..,x’m]  → x’1 | .. | x’m Gate

P  → P’ ⇒ P | P”  → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing
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Technically, the fully parenthesized Gate rule is:

x1 | ( .. | (xn | [x1,..,xn].[x’1,..,x’m])..)  → x’1|(..|(x’m)..)

but we have structural congruence to reassociate. 



Examples

x1 | x1.x2 → x2

x1 | x1.x2 | x2.x3 →→ x3

x1 | x2 | [x1,x2].x3 → x3

x1 | x1.x2 | x1.x3 → x2 | x1.x3
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1 1 2 1 3 2 1 3

and also    → x3 | x1.x2

x1 | x2 | x3 | [x1,x2].x4 | [x1,x3].x5 → x3 | x4 | [x1,x3].x5

and also  → x2 | [x1,x2].x4 | x5

X | ([X,x1].[x2,X])*   

a catalytic system ready to transform multiple x1 to x2, with catalyst X



High(er)-Level Languages

● We now have an intermediate language: the combinatorial strand algebra 

o It can be compiled “directly” to DNA following [Soloveichik et al.]

● But we really want to compile “high-level languages”. Such as:

o Boolean Networks

o Petri Nets

o Finite State Automata

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]
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o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

o Interacting Automata

o π-calculus (no, not in the current strand algebra)

● And also

o Higher-level strand algebras, which may form 

more convenient intermediate languages.

o Such as the Nested Strand Algebra (with nested expressions).



Exercise 5: Boolean Networks

Boolean Networks to  Strand Algebra
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Find an encoding of Boolean networks in Strand Algebra.

It’s enough to show how to encode and AND gate that takes Boolean signals on 

a,b wires and produces a Boolean signal on the c wire.



Petri Nets

Transitions as Gates
Markings as Signals 

Gates as Transitions 

Petri Nets to Strand Algebra Strand Algebra to Petri Nets
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or 



Finite State Automata

FSA to Strand Algebra
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Input strings



Interacting Automata (first try)

A

B

!a

?a ?b

!b

Groupies

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

Strand(Groupies)

on a: ([B,A].[A,A])* |

on b:   ([A,B].[B,B])*

Strand(E) =  Parallel( ⟪…⟫ means multisets

⟪ ⟫

⟪ ⟫

Interacting Automata to Strand Algebra

Map each possible interaction to a Join
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A

B

!a

?b

!b

?a
Celebrities

A = !a;A ⊕ ?a;B

B = !b;B ⊕ ?b;A

Strand(Celebrities)

on a: ([A,A].[B,A])* |

on b:   ([B,B].[A,B])*

Strand(E) =  Parallel( ⟪…⟫ means multisets

⟪ (X.[P])* s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ([X,Y].[P,Q])*  s.t. ∃i,j,c. E.X.i = ?c;P and E.Y.j = !c;Q ⟫ )

However, Interacting Automata are stochastic!



Summary

● DNA strand displacement gates can be formalizes as Strand Algebra.

● Strand Algebra is equivalent place/transition Petri nets, but:

o Has a compositional syntax.

o Keeps track of the (DNA) resources that are consumed during computation.

● While not Turing complete, Strand algebra can embed many common and 

useful formalisms:
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useful formalisms:

o Boolean Networks

o Petri Nets

o Finite State Automata over multisets and over strings

o Finite State Transducers over multisets, and from string to multisets (not 

shown) (not clear how to transduce to strings)

o Interacting Automata, at least qualitatively.


