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The “Type System” of Chemistry

The International System of Units (SI) defines the following physical units, with related derived units
and constants; note that amount of substance is a base unit in 51, like length and time:

mol  (a base unit) mole, unit of amount of substance

m (a base unit) meter, unit of length

5 (a base unit) second, unit of fime

L=0.001-m> liter (volume)

M=mol L molarity (concentration of substance)

Ny mmol™ = 6.022x107 Avogadro’'s number (number of particles per amount of substance)

For a substance X:mol, we write [X]:M for the concentration of X, and [X]'.'M-S_l for the time derivative

of the concentration.

A continuous chemical system (C,V) is a system of chemical reactions C
plus a vector of initial concentrations Vy: M, one for each species X.

The rates of unary reactions have dimension s'.

The rates of binary reactions have dimension M-'s1,
(because in both cases the rhs of an ODE should have dimension M-s1).

Relating Concentration to Number of Molecules
For a given volume of solution V, the volumetric factor y of dimension M1 is:

v: M1 = NV where N,:mol" and V:L

#X / v : M = concentration of X molecules
v:[X] : 1 = total number of X molecules (rounded to an integer).



Discrete
Chemistry

initial quantities

#A,

A - A

A+B - A'+B’

A+A =7 A+A”

The Gillespie Conversion

Continuous
: =N,V M-
Chemistry '~ 4
initial concentrations
[A]y with [A]y= #AO/’Y
A Sk A withk=r sl

A+B K A’+B”  withk=ry :Mls!

A+A K A’+A”  withk=ry/2 M-l

V = interaction volume
N, = Avogadro’s number

Think y=1
ie.V=1/N,

M = mol-L!
molarity (concentration)

ODE = ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
v v
CTMC = CTMC




ContY and DiscY

$|4.2—3 Definition: Cont, and Disc,

For a volumetric factor :M, we define a translation Cont, from a discrete chemical systems (C,P),

with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with

initial concentration [X]y = Vx. The translation Disc, is its inverse, up to a rounding error [ v[X]o | in

converting concentrations to molecule counts. Since v is a global conversion constant, we later

usually omit it as a subscript.

Cont. (X =" P) =X-*P withk=r, ris ks
Cont(X+Y -*P) =X+Y>FP with k = ry ris7 kM st
Cont(X+X -'P) =X+X-FP with k = ry/2 ris7 kM st
Cont.(#Xg) =[X]o with [X]g = #Xo/y Xgmol  [X]o:M
Disc,(X - P) =X P withr=k, ks ris]
Disc(X+Y »¥P) =X+Y P with 1 = kfy kMst sl
Disc(X+X »¥P) =X+X-P with 1 = 2k/y kMs? sl
Disc([X]o) = #Xp with #Xg = y[X]o| [X]oM  Xg:mol

ChY = ContYoCh

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

CTMC
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Same Semantics

Could chemistry itself be that semantics?
No: different sets of reactions can have the same behavior!

B—sA

A+B " A+A

A+A =" A+B

|
A=laA®1a;B . A=12;A® Ib;A ® 2b;B
B _ ?a;A® T(s);A Q“ - -a, oy «Jy
%, B =7?a;A® 7;A
B—sA ",
/ A+B 5" A+A "
A+A —' B+B < Different reactions,

but they induce the
same ODEs

A=1a;A® !b;B ® ?b;B
B =7?a;A® 1A



From Reactions to ODEs (Law of Mass Action)

vi: A+B —k, C+C Stoichiometric ODE

= ODE
Write th i A
V! A+C —k; D cor;fiicieents by T c 1
columns ontinuous
Vst C —k; E+F D Chemistry
-F+F —k. B : Process
Va 4 . reactions k2 1 T Algebra
N | ViV Vs Vs A _JL_ C Discrete
Quantity Al-1]-1 Chemistry
changes 8 B | -1 1 k1 ‘ A 4
Stoichiometric olCcl2]-1]-1 CTMC — CTMC
matrix 8_ D 1
kRate e E 1 B C
F 11-2 ‘k\ A K;
Set a rate law for each reaction
d[A]/dt - 'l1 B l'2 Read the concentration changes (Degradation/Hetero/Homeo)
d[B]/dt = 'l1 + l4 < from the rows l X: chemical species
d[C]/dt = 2[1 - [2 - [3 |.1 k1 [AT[B] E-]: ct|ualntity of molecules
: rate laws

d[D]/dt = lz E.g. d[A]/dt = L, k,[A][C] k: kinetic parameters
d[E]/dt — l3 'k1 [A][B] - kz[A][C] |.3 k3[C] N: stoichiometric matrix
d[F]/dt = |, - 21, L] KJFP




From Processes to ODEs via Chemistry!

A=la ;A® ;B |

€ =1¢);C @ fa)A )
(A+B —5B+B |

B+C —=sC+C
KC+A —S A+A )

Al
co

0 900xA, 500xB, 100xC 2%

" " intel
Matlab | «
continuous_sys_generator

(d[A]/dt = -s[A][B]+s[C][A]
d[B]/dt = -s[B][C]+S[A][B]
| d[C]/dt = -s[C][A]+s[B][C]

(r=1

directive sample 0.03 1000
directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new
c@1.0:chan

let A() = do !a;A() or ?b; B()
and B() = do !b;B() or ?c; C()
and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

oo
828
3Saa

ODE = ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
y v
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From Processes to ODEs via Chemistry!

] | =Bt A
a b a: A4B — A4A lose 1A at rate ry
b: A+A —2r A+B x
(discrete reactions)
d[A]/dt = t[B] + ry[A][B] - ry[A]
‘a b Bt A d[B]/dt = -t[B] -r/[A][B] + ry[A]2
A+B ST A+A
(a@r) AAA o AT —

(b@r)

(continuous reactions)

Different chemistry

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

------------------------------------------ but same ODES, hence IE NN NN I NS EEEEEE NN NN EEEEEEEEEEEEE
equivalent automata
:: z:];t_i A+A lose 2A at rate ry/2
b: A+A - B+B x
(discrete reactions)
d[A]/dt = t[B] + ry[A][B] - ry[A]*
Bt A l d[B]/dt = -t[B] -ry[A][B] + ry[A]?

A+B -5 A+A

ARA STRB T

(continuous reactions)




Processes Rate Equation

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accre(Y,X)-[Y]) -

for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:

the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X

times the depletion of X to some other Y”

Deple(X) =
E(i: EX.i=t;P) r +
X(i: E.X.i=?a,;P) ry-OutsOnc(a) +
¥(i: E.X.i=la(,;P) ry-InsOng(a)

Accre(Y, X) =
X(i: E.Y.i=t,;P) #X(P)r
X(i: E. Yl-?ar P) #X(P)- ryOutsOnE( ) +
X(i: E.Y.i=la);P) #X(P)-ryInsOng(a)

InsOng(a) = £(YeE) #{Y.i | E.Y.iz2a,,;P}-[Y]
OutsOng(a) = £(YeE) #{Y.i | E.Y.i=la;P}-[Y]

Deplg(X)-[X]

X = T(r);o — d

X =7a;0 d
—
Y =la;0 d

® la;);0

X S X

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]?




Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

Thm: E = Cont(Ch(E))

Thm: Cont(C) = Pi(C)

For each E there is an E’ = E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ = E that is detangled and in

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

automata form (E’ = Detangle(E)).

ODE

ODE

t

Continuous
Chemistry

CTMC

CTMC

ODE

Y

Process
Algebra

l

CTMC




200

180 |
160 |
140 |
120 -
100 |
80
60 -}
40 |
20 |

Q: What does this do?

Stochastic Answer:
robust quasi-oscillation

— Ga() —— Gb()

Exercise 2

A=la,;A® ;N A =7b;B
B =1b,;B®%;B B’ =7aA

Ad = !a(r);Ad
Bd = !b(r);BdJ

N

- stochasic system keeps
. oscillating at max level.

SPiM

140

120

100

80

B0

40+

20

180

160

dampened oscillation

| )
Derive the ODEs from these “Hysteric Groupies”
automata. Either by going through the chemical __
reactions and the Law of Mass Action (easier), or R
directly from the Process Rate Equation.
| JAN y,
O e e
. oscillation, while the Deterministic Answer:




Epidemics

Non-Chemical Mass Action

Kermack, W. O. and McKendrick, A. G. "A Contribution to the Mathematical Theory
of Epidemics.” Proc. Roy. Soc. Lond. A 115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

linfect ?infect

Susceptible Q?

- @recover

Recovered

?infect

Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models
of Infectious Disease

R. Norman and C. Shankland

Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk

Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical
questions about the “best” way to defined the model.

new infect @0.001:chan()
val recover = 0.03

let Recovered() =
?infect; Recovered()

and Susceptible() =
tinfect; Infected()

and Infected() =
do linfect; Infected()
or ?infect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected())

25

Recovered() —— Susceptible() Infected()

200 -

150

100

50

0 50 100 150 200



Differentiating
Processes!

(.. )
S= ?.1(t),l |
| = !l(t);| ® ?1(t);l @ t ;R
6 = 2i5R )
@ +| S|+ )
| + | W] + | - “useless”
| =" R reactions
\R + I %t’y R + I/
d[S]/dt = -ty[S][I]
d[1]/dt = ty[S][I]-r[l]
d[R]/dt = r[l]
Automata %Z —efs
produce the gz alS —br
standard ODEs! % b

{the Kermack-McEendnck, or SIE model)|

ODEs

2507

2001

1501

100

501

250

200

160 -

100+

01

Infected(
Suzceptble
Recovered(

SPiM

S= ?.i(t);l
I'= i1 ®© 7R

t=0.001 r=0.03
SO=200 |0=2

v=1.0

200

Cell D [igner

S+ ]+
| -'R
t=0.001

r=0.03
$,=200/

h L L L |
0 100 120 140 160 180

T
continuous_sys_generator

ds/dt = -tySl
di/dt = tySl-rl
dRr/dt = rl

t=0.001 r=0.03
$,=200/7
1,=2/y

L
a0

100 150 200



Simplified Model

not useless! 4 , I
. S =il
linfect =15 -

r
Susceptible () Q) useless R=0
2infect Infected \_ J
- @recove Not totally obvious e
that one could have S+ U] +]
Recovered é simplified the
automata model. | - R

(d[S]/dt = -ty[S][1]
d[1]/dt = ty[SI[1]-[1]

————— :Chan() 25 Recovered() Susceptible() Infected() \d [R] /dt = r[ I]
val recover = 0.03 200
le(t) Recovered() = . Same ODE, hence
s equivalent
and Susceptible() =
?infect; Infected() 100 1 automata models.

and Infected() = 50 |
do linfect; Infected()
or delay@recover; Recovered()

0
run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200



Unbounded Systems
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Predator-Prey

an®
.“ kl....
* “l- .

Herbivor & ¢ & @breeding
0.’
' 2cull
@predation |
' 1cull
Carnivor
....‘o
@mortality
2g5 Carni_vorO
’m Herbivord

Flotting: Live
Simulation: Halted, Tirme = 0.343410 (217 points at 0.00634 89 simTirmelsysTime)

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



Lotka-Volterra in Matlab

C=1,0® Icp;(CIC)
#H,, #C,

(HoPH+H )
C—-m0
H+C—-o>PrC+C
[Hlo = #Ho/y

\[C]O = #Co/y

J

d[H]/dt = b[H]-py[H][C]
d[C]/dt = -m[C]+py[H][C]

[H]o = #Ho/y
[Clo = #Co/y

ann

700

600

500

400

ann

200

100

m=100.0
b=300.0
p=1.0
v=1.0
#H, = 100
#C, = 100

Carnivord  gpim
Herbivor)

Extinction

700

B00 [

a00

400

300

200

100

directive sample 0.35 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

i]

. L .
250 300 350 400

No extinction

Which one is the “right prediction”?
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Chemical Master Equation

Chemical Master Equation for a chemical system C

apr(s,t)/ot = X._, , a;i(s-Vv;)-pr(s-v;,t) - a;(s)-pr(s,t)  for all seStates(C)

Reactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) reactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that reaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each reaction in the current state” l T A[;;E:;
se 1..N—Nat is a state of the system with N chemical species Discrete
Chemistry
pr(s,t) = Pr{y(t)=s |x(0)=sy} is the conditional probability of the system x ‘
being in state s at time t given that it was in state s, at time 0. CME = CME

There are 1..M chemical reactions.

v; is the state change caused by reaction i (as a difference)

a;(s) = ¢;-hy(r) is the propensity of reaction i in state s, defined by a base
reaction rate and a state-dependent count of the distinct combinations of
reagents. (It depends on the kind of reactions.)



Process Algebra Master Equation

Process Master Equation for a system of reagents E

apr(nt)/dt = Xig ai(r-v;)-pr(r-v;,t) - a(r)-pr(rt)  forall reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that interaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” l T A[;);E:ESI
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |x(0)=ry} is the conditional probability of the system y ‘
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;(r) = ryhy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



... details

Process Master Equation for Reagents E

pr(nt)/ot = X, 5 a(r-v;)-pr(r-v;,t) - a;(r)-pr(r,t)  for all reStates(E)

pr(p,t) = Pr{S(t)=p | S(0)=p,} is the conditional probability of the
system being in state p (a multiset of molecules) at time t
given that it was in state p, at time 0.

3 ={{X.i} s.t. EX.i =1,;,Q} U
{{X.i, Y.j} s.t. E.X.i=7?n;Qand E.Y.j = In;R}
is the set of possible interactions in E

v; is the state change caused by an interaction i€ 3.
V]. = -X+Q ]f ] = {X.]} s.t. E.X.i = T(r);Q
vi = -X-Y+Q+R if i={X., Y.j}s.t. EX.i=?n;;Qand E.Y.j = In;;R

a; is the propensity of interaction i in state p. Here p#* is the number of X in p.

a(p) = r-p* if i = {X.i} s.t. E.X.i = 7,;Q

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CME

a;(p) = r-p*-p#Y if i = {X.i, Y.j} s.t. X=Y and E.X.i =7a,;Q and E.Y.j = la;;R

a;(p) = r-p™-(p™*-1) if i = {X.i, X.j} s.t. E.X.i =?a,;Qand E.X.j = la ;R

ODE

Process
Algebra

l

CME




Equivalence of Master Equations

e Def: = is equivalence of derived Master Equations (they are identical).

ODE = ODE ODE = ODE
e Thm: E= Ch(E) 1 1
Continuous Continuous ‘
. . Chemistry Chemistry
e Thm: C = Pi(C) l T Process
Algebra
Discrete
Chemistry
CME = CME CME = CME




GMA =z CME

ODE

t

Continuous
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'

v, Discrete
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v

CTMC

ODE

|

Process
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l

CTMC

)

-

Semantics #1
Continuous state space

Syntax

Semantics #2
Discrete state space



Processes to GMA Directly

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accre(Y,X)-[Y]) -

for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:

the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X

times the depletion of X to some other Y”

Deple(X) =
E(i: EX.i=t;P) r +
X(i: E.X.i=?a,;P) ry-OutsOnc(a) +
¥(i: E.X.i=la(,;P) ry-InsOng(a)

Accre(Y, X) =
X(i: E.Y.i=t,;P) #X(P)r
X(i: E. Yl-?ar P) #X(P)- ryOutsOnE( ) +
X(i: E.Y.i=la);P) #X(P)-ryInsOng(a)

InsOng(a) = £(YeE) #{Y.i | E.Y.iz2a,,;P}-[Y]
OutsOng(a) = £(YeE) #{Y.i | E.Y.i=la;P}-[Y]

Deplg(X)-[X]

X = T(r);o — d

X =7a;0 d
—
Y =la;0 d

® la;);0

X S X

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]?




Process Algebra Master Equation

Process Master Equation for a system of reagents E

apr(nt)/dt = Xig ai(r-v;)-pr(r-v;,t) - a(r)-pr(rt)  forall reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that interaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” l T A[;);E:ESI
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |x(0)=ry} is the conditional probability of the system y ‘
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;(r) = ryhy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



A+A 52r A =2 A+A->'0

1A is lost in reaction. 2A are lost in reaction.

Law of Mass Action

d[A]/dt £ -1/ry[A]2 d[A]/dt

In vol. YT Gillespie conversion
k=ry/2

1 CTMC

Gillespie conversion T In vol. y
k=2ry/2

CTMC l

(For conservation of mass, consider instead A+A —2"A+B  vs. A+A —' B+B)



A+A —2T A

°~J

A+A -0

d[A]/dt = -rg[A? = d[A]/dt = -ry[A]? = d[A]/dt = -ry[A]2 = d[A]/dt = -ry[A]?

A+A ST A
A=7a,);0 @ la;A [Alo=2/y
AlA N\ A+A 527 A
l A+A
y
2r — 2r
@ — [ ST )
AlA A A+A A
la
7a

A+A — 2 Q
[A]0=2/Y A = ?a(rlz);OAG') !a(r/z);o
Al
A+A >0 /
A+A l
\ ;
r — o >
A+A 3 — AlA ?)
?a la
(a@r/2)



Continuous vs. Discrete Groupies

2000

1000

2000 7

1000 -

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

let A(
and B()

o 1a; A() or b; B()
0 1b; B() or 7

let Ad()
and Bd() = Ib; BA()

run 2000 of A()
run 1 of (Ad() | BA()

(B8 (I8 (Wii®) U with doping

2000xA, 0xB , 1xA4, 1xB;, r=1.0

directive sample 5.0 1000
directive plot B(); A()

newa@1.0:chan()
new be1.0:chan()

let A() = do 1a; A() or 7b; 2; B()
and B() = do 1b; B() or 7a; 7a; A()

let Ad() =
and Bd()

123 Ad()
1b; Bd()

£un 2000 of A()
run 1 of (Ad() | B())

50

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

et A() = do la; A() or 7b; 7b; 2b; B()
fo 1b; B() or 7a; 7a; 7a; A()

run 2000 of A()
run1 of (Ad() | B4()

B

Al

50

50

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0
2000.0

Groupe ODE - Groupies Hysteric 1.mat

[0:0.001:5.0] r=1.0 k=1.0.
Adx1/dt=xt"xd-x3'x1-x1+x4, 2000.0
A dQ/dtaxd X1 x2x1x2, 0.0
B A /dt=x3x2-x1"x3x34x2, 0.0
B’ dxd/dtex1x3x1°x+x3-x4, 0.0

Matlab

SPi

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0
A A1 /dtax1 x6-x3x1-x1+x6, 2000.0

B dxb/dt=x1"xd-x1"x6+x4-x6, 0.0



Scientific Predictions

;80

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.



R.Blossey, L.Cardelli, A.Phillips:

Compositionality, Stochasticity and
An d Yet It Moves Cooperativity in Dynamic Models of

Gene Regulation (HFSP Journal)

The Repressilator A fine stochastic oscillator over a
] wide range of parameters.
X Neg Z
1 [yl Pi
Neg N eg Simulatm:a.'l?ig]rze = B3810.179900 {1070 points at 34439 simTime/sysTime and halted) e Feused
Parametric representation /d[Neg/x,yl/dt = -r[Tr/x][Neg/x,y] + h[Inh/x,y]
— ?2a- . d[Neg/y,z]/dt = -r[Tr/y][Neg/y,z] + h[Inh/y,z]
Neg(a,b) = 7a; Inh(a,b) © 7; (Tr(b) | Neg(a,b)) d[Neg/z,x]/dt = -r[Tr/z][Neg/z,x] + h[Inh/z,x]
Inh(a,b) = t,; Neg(a,b) d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - h[Inh/x,y]
Tr(b) = !b; Tr(b) ® 1,; 0 d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - h[Inh/y,7]
N N N d[Inh/z,x]/dt = r[Tr/z][Neg/z,x] - h[Inh/z,x]
eg(X(r),Y) | Neg(y(),z() | Neg(z),x,) d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x]
‘ d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y]
QTr/z]/dt = e[Neg/y,z] - g[Tr/z] /
Neg/x,y —¢ Tr/y + Neg/x,y

Neg/y,z —»¢ Tr/z + Neg/y,z

Neg/z,x —°¢ Tr/x + Neg/z,x Simp“fying (N is the quantity 122 | . ‘ |

Tr/x + Neg/x,y —" Tr/x + Inh/x,y of each of the 3 gates) su Analytlcauy not
Tr/y + Neg/y,z —" Tr/y + Inh/y,z [ \ il an oscillator!

Tr/z + Neg/z,x =" Tr/z + Inh/z,x d[Neg/x,y]/dt = hN - (h+r[Tr/x])[Neg/x,y]

Inh/x,y —" Neg/x,y d[Neg/y,z]/dt = hN - (h+r[Tr/y])[Neg/y,z]

Inh/y,z —" Neg/y,z d[Neg/z,x]/dt = hN - (h+r[Tr/z])[Neg/z,x]

Inh/z,x —h Neg/z,x d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x] Matlab
Tr/x 20 d[Tr/y]/dt = e[Neg/x,y] - [Tr/y]
Tr/y —* O @Tr/z]/dt = e[Neg/y’Z] - g[Tr/Z] j rval/step [0:10:20000] N=1, r=1.0, €=0.1, h=0.001, g=0.001

inter
g (Neg/x,y) dx1/dt = 0.001 - (0.001 + x4)'x1 1.0
Tr/z —20 (Neg/x,y) dx2/dt = 0.001 - (0.001 + x5)'x2 1.0
(Neg/x,y) dx3/dt = 0.001 - (0.001 + x6)'x3 1.0
Neg/X,y + Neg/y,Z + Neg/Z,X (Tr/%) dx4/dt = 0.1%3 - 0.001°x4 100.0
(Trry) d¥5/dt = 0.1%x1 - 0.001%5 0

(Tr/z) dx6/dt = 0.1°x2 - 0.001*x6 0




Model Compactness

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete

Chemistry

CTMC = CTMC




- E,, has 2n variables (nodes) and 2n terms (arcs).
- Ch(E,) has 2n species and n? reactions.

E;

Xo = 72X

X1 = ?a(r);XZ

Xy =23, Xg

Yo = la; Y,

Yy =1a,;Y;

Y, =1a;; Yo
ODE(E;)

d[Xo]/dt = -r[Xo][Yo]
d[X;]/dt = -r[X;][Y,]
d[Xz]/dt = -r[X,][Y,]
d[Yo]/dt = -r[Xo][Y,]
d[Y,]/dt = -r[X,][Y]
d[Y,]/dt = -r[Xo][Y-]

nZ Scaling Problems

- The stoichiometric matrix has size 2n-n? = 2n3.
- The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

Ch(E,) StoichiometricMatrix(Ch(E,))

Agg: Xpt+Yo =" X +Y,

o G G G Go G G Qo G Gz

gyt Xo+Yq —F X,+Y, Xy -1 -1 -1 +1  +1 +1

Aq0: Xi+Yy =" Xo+Y, Xy 1+ +1 -1 -1 1

g XYy =N Xp+Y, X, +1 0+ o+ -1 1

A1zt Xi#Y =" Xp#Yo Yo -1 -1 -1 +

Ay Xo+Yy o Xp+Y4

3y, Xp+Y, " Xg+Y, =1 _ _

25" Xp+Y; o X+, £ - - -
E3

- FEXIIY AT - rDXoILY,] + rIX,][Yo] + rXILY4] + rXG]LY]

- FDXGIEYAT - rDXGIEYS] + rDXo Yol + rIXoIDY 4] + r[XoI[Y-] fa la

- IDGILY4] - rDGITY,] + rIXGIDYo] + rIXGIDY4] + rIX1LYo] al (x) (x) |

- FDXI0Y o] - rDXIDY 0] + rIXoILY,] + rDXGILY,] + rDXG]LY] A la

= PIXGIDY] - FIXIEYA] + rIXoIYo] + rIX(I[Yo] + rIX,][Yol ) (0

- XGI0YS] - rDXIEYS] + rIXeI[YA] + rIXGI0Y ] + rIX,10Y4]



Entangled vs detangled

E; Detangle(E;)

(closely related to
Pi(Ch(E;)) )



Model Maintenance

e Biology (unlike much of chemistry) is
combinatorial

o Biochemical systems have many regular repeated
components

o Components interact and combine in complex
combinatorial ways

Components have local state

o A biochemical system is vastly more compact that
its potential state space Or

e One may have to expand the state space during
analysis, but must not do it during description

e There is a good way:
o Describe biochemical systems compositionally

o Each component with its own state and
interactions

o ... as Nature intended... Or ...
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Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Chemical
Ground Form

a

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
combinatorial

chemical systems
compactly




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

X

Continuous
Chemistry

ODE

E

'

Discrete
Chemistry

X

Biochemical
Ground Form

v

CTMC

X

1

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
infinite

chemical systems
finitely




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

obE] X [oDE
t 12
Continuous
Chemist
elm]f Ty rt-Calculus
k-Calculus
Discrete x
Chemistry 1
CTMC )( CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
generative

chemical systems
finitely
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Conclusions

Process Algebra OE] = [OmE
o An extension of automata theory to populations of interacting automata Continuous
o Modeling the behavior of individuals in an arbitrary environment Chimitry T
o Compositionality (combining models by juxtaposition) v Algebra
Chemistry
Connections between modeling approaches _

o Connecting the discrete/concurrent/stochastic/molecular approach
o to the continuous/sequential/deterministic/population approach

Connecting syntax with semantics
o Syntax = model presentation (equations/programs/diagrams/blobs etc.)
o Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

o We need (and sometimes have) good semantic techniques to analyze state
spaces (e.g. calculus, but also increasingly modelchecking)

o But we need equally good syntactic techniques to structure complex models
(e.g. compositionality) and analyze them (e.g. process algebra)

A bright future for Computer Science and Logic in modern Biology

o Biology needs good analysis techniques for discrete systems analysis
(modal logics, modelchecking, causality analysis, abstract interpretation, ...)



