
Molecules as Automata
Representing Biochemical Systems

as Collectives of Interacting Automata

Luca CardelliLuca Cardelli

Microsoft Research

Open Lectures for PhD Students in Computer Science
Warsaw 2009-03-12..13

http://lucacardelli.name

Macro-Molecules as
Interacting Automata

22009-03-12Luca Cardelli 22009-03-12

Interacting Automata

Cells Compute

● No survival without computation!
o Finding food

o Avoiding predators

● How do they compute?
o Unusual computational paradigms.

o Proteins: do they work like electronic circuits?

o Genes: what kind of software is that?

● Signaling networks

32009-03-12Luca Cardelli 32009-03-12

● Signaling networks
o Clearly “information processing”

o They are “just chemistry”: molecule interactions

o But what are their principles and algorithms?

● Complex, higher-order interactions
o MAPKKK = MAP Kinase Kinase Kinase:

that which operates on that which operates on that
which operates on protein.

● General models of biological computation
o What are the appropriate ones?

Ultrasensitivity in the mitogen-activated protein
cascade, Chi-Ying F. Huang and James E. Ferrell, Jr.,
1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

LDL-Cholesterol
Degradation

Protein Production
and Secretion

Biological “Algorithms”

42009-03-12Luca Cardelli 42009-03-12

H.Lodish et al.
Molecular Cell Biology.
fourth Edition p.730.

Viral Replication

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.

Adapted from: B.Alberts et al.
Molecular Biology of the Cell

third edition p.279.

Discrete State Transitions

S
y
nt
a
x

52009-03-12Luca Cardelli 52009-03-12

Compositionality (NOT!)

http://www.expasy.ch/cgi-bin/show_thumbnails.pl

Roche Applied Sciences Biochemical Pathways Wall Chart

62009-03-12Luca Cardelli 62009-03-12

Process Algebra

● Reactive systems (living organisms, computer networks, operating systems, …)

o Math is based on entities that react/interact with their environment
(“processes”), not on functions from domains to codomains.

● Concurrent
o Events (reactions/interactions) happen concurrently and asynchronously,

not sequentially like in function composition.

● Stochastic
o Or probabilistic, or nondeterministic,

but is never about deterministic system evolution.

[Hoare, Milner, Pnueli, etc.]

72009-03-12Luca Cardelli 72009-03-12

but is never about deterministic system evolution.

● Stateful
o Each concurrent activity (“process”) maintains its own local state,

as opposed to stateless functions from inputs to outputs.

● Discrete
o Evolution through discrete transitions between discrete states,

not incremental changes of continuous quantities.

● Kinetics of interaction
o An “interaction” is anything that moves a system from one state to another.

A1

Interacting Automata

?a
B1

!a

B2

@s

A1 is a state

a is a channel i.e. a named
interaction interface

(e.g. a surface patch)

?,! indicate any complementarity of
interaction (e.g. charge)

?a, !a indicate complementary actions,

Current State

Interaction

Transition

Decay

Legend

82009-03-12Luca Cardelli 82009-03-12

B3

@s ?a, !a indicate complementary actions,

@r, @s are rates

Kinetic laws:

Interacting Automata

?a
B1

!a

B2

@s

@r

A1 is a state

a is a channel i.e. a named
interaction interface

(e.g. a surface patch)

?,! indicate any complementarity of
interaction (e.g. charge, shape)

?a, !a indicate complementary actions,

A1Current State

Interaction

Transition

Decay

Legend

92009-03-12Luca Cardelli 92009-03-12

B3

@s ?a, !a indicate complementary actions,
joined by an interaction arrow

@r, @s are rates

Kinetic laws:
Two complementary
actions may result in
an interaction.

Interacting Automata

?a
B1

!a

B2

@r

@s

A1

A1 is a state

a is a channel i.e. a named
interaction interface

(e.g. a surface patch)

?,! indicate any complementarity of
interaction (e.g. charge)

?a, !a indicate complementary actions,

Current State

Interaction

Transition

Decay

Legend

102009-03-12Luca Cardelli 102009-03-12

B3

@s

Kinetic laws:

?a, !a indicate complementary actions,
joined by an interaction arrow

@r, @s are rates

Two complementary
actions may result in
an interaction.

A decay may happen
spontaneously.

Interacting Automata Transition Rules

Delay

(a@r)

τ@r τ@r
r

Current State

Transition
Delay

112009-03-12Luca Cardelli 112009-03-12

?a !a
?a !a

Interaction

r

Q: What kind of mass behavior can this produce?
(We need to understand that if want to understand biochemical systems.)

@r

Interactions have
rates. Actions DO
NOT have rates.

Interacting Automata

τ@λ1
τ@λ2

τ@λ3

τ@λ5

@r1

@r2

@r3

?a
!a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

new a@r1
new b@r2
new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = τ@λ5; A1

B = τ@λ ; B + !a; B

Communication
channels

A
u
tom

ata

The equivalent process algebra model

122009-03-12Luca Cardelli 122009-03-12

τ@λ4

?c

C3

B1 = τ@λ2; B2 + !a; B3

B2 = τ@λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = τ@λ3; C1

C3 = τ@λ4; C2

A1 | B1 | C1

A
u
tom

ata

The system and
initial state

Current State

Interaction

Transition
Delay

Interactions have
rates. Actions DO
NOT have rates.

A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

Suppose this is the

next interaction

(stochastically chosen)

!a

132009-03-12Luca Cardelli 132009-03-12

!b

A

B

!a

?a ?b

!b

!b

One lonely automaton

cannot interact

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b!a

Interactions in a Population

142009-03-12Luca Cardelli 142009-03-12

!b !b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b!a

Interactions in a Population

152009-03-12Luca Cardelli 152009-03-12

!b!b

A

B

!a

?a ?b

!b

All-A stable
population

A

B

!a

?a ?b

!b!a

A

B

!a

?a ?b

!b

Interactions in a Population (2)

162009-03-12Luca Cardelli 162009-03-12

!b

A

B

!a

?a ?b

!b

!b

Suppose this is the
next interaction

!a

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population (2)

172009-03-12Luca Cardelli 172009-03-12

A

B

!a

?a ?b

!b

!b!b

All-B stable
population

Nondeterministic
population behavior

(“multistability”)

CTMC Semantics

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

BA

r
CTMC
(homogeneous) Continuous Time
Markov Chain
- directed graph with no self loops
- nodes are system states
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is
the sum of all the exit rates from A

182009-03-12Luca Cardelli 182009-03-12

B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Stochastic Collectives

● “Collective”:
o A large set of interacting finite state automata:

● Not quite language automata (“large set”)
● Not quite cellular automata (“interacting” but not on a grid)
● Not quite process algebra (“collective behavior”)
● Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
o Interactions have rates

192009-03-12Luca Cardelli 192009-03-12

o Interactions have rates

● Not quite discrete (hundreds or thousands of components)
● Not quite continuous (non-trivial stochastic effects)
● Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry
o Which is a large set of stochastically interacting molecules/proteins
o Are proteins finite state and subject to automata-like transitions?

● Let’s say they are, at least because:
● Much of the knowledge being accumulated in Systems Biology

is described as state transition diagrams [Kitano].

Can add a new component
without changing the old
ones (if their interface

remains fixed).

Chemistry vs. Automata

r: A + B →k1 C + D
s: C + D →k2 A + B

A B

r

Reaction
oriented
1 line per
reaction

Does A
become
C or D?

A B !rk1 ?rk1?sk2 !sk2Reaction
oriented

Says what “A” does. Says what “A” is.

202009-03-12Luca Cardelli 202009-03-12

A = !rk1; C
C = ?sk2; A

B = ?rk1; D
D = !sk2; B

C D
rk1

Interaction
oriented

The same “state space”

Interaction
oriented

reaction

1 line per
component A

becomes
C not D!

C D
sk2

CTMC

From Petri & Reisig, Scholarpedia, 2009

Groupies and Celebrities

212009-03-12Luca Cardelli 212009-03-12

Groupies and Celebrities

Celebrity
(does not want to be like somebody else)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A

B

!a

?b

!b

?a

a@1.0

b@1.0
A

B

!a

?b

!b

?a

A

B

!a

?b

!b

?a

222009-03-12Luca Cardelli 222009-03-12

0

20

40

60

80

100

120

140

160

180

200

0 0.02 0.04 0.06 0.08 0.1

A() B()

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in
the same state, and hence change, so the majority is weakened.

A stochastic collective of celebrities:

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

equilibrium

time

#

#A

#B
!b !b

A

B

!a

?b

!b

?a

A

B

!a

?b

!b

?a

Groupies and Celebrities

Groupie
(wants to be like somebody different)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

A

B

!a

?a ?b

!b

a@1.0

b@1.0
A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

232009-03-12Luca Cardelli 232009-03-12

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2

A() B()

always
eventually
deadlock

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the
few B’s have plenty of A’s to emulate, so the majority may switch to B. Leads to deadlock
when everybody is in the same state and there is nobody different to emulate.

A stochastic collective of groupies:

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

!b !b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Both Together

directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac()

A way to break the deadlocks: Groupies with just a few Celebrities

A few
Celebrities

Many
Groupies ?a

!a

?b

!a

?a ?b

Ac

Bc

Ag

Bg

242009-03-12Luca Cardelli 242009-03-12

run 1 of Ac()

run 100 of (Ag() | Bg())

A tiny bit of
“noise” can make
a huge difference

!b!b

never
deadlock

Hysteric Groupies

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more
convincing”, or “hysteresis” (history-dependence), to switch states.

(With doping to

a “solid threshold” to observe switching

A

B
?a
?a

?b
?b

!a

!b !a !b

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample
orbit
A vs. B

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

252009-03-12Luca Cardelli 252009-03-12

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample
orbit
A vs. B

(With doping to
break deadlocks)

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

!b

A

B

?a
?a

?b
?b

!a

!b

?a ?b

!a !b

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

N.B.: It will not oscillate
without doping (noise)

“regular”
oscillation

Devices

262009-03-12Luca Cardelli 262009-03-12

Some Devices

?a

E

S

!a
E’

P

@1.0

@1.0

1000´S, 1´E

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100´aHi, 1000´bLo, 1000´cLo,
rates=1.0

Linear Pump

Ultrasensitive Switch

Cascade Amplifier

272009-03-12Luca Cardelli 272009-03-12

!b

S P
?b

?a

@1.0

@1.0

100´F, 0..200´E A

!b

B
?b

!c

C
?c

Symmetric Wave Generator
E E’

@1.0

F’ F
@1.0

!a

More Devices

A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

Oscillator

Neg(a,b) !b

?a

Inh(a,b)

t(h)

Tr(b)

t(d)

t(e)

Repressilator (1 of 3 similar gates)

b = not a c = a or b c = a and b c = a imply b c = a xor b

282009-03-12Luca Cardelli 282009-03-12

0

20

40

60

80

100

120

0 20 40 60 80 100

!a !b

!b

?a ?b

?a ?b

b = not a

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

c = a or b

!c

?a ?b

Inputs:
10 !a for 4t
2t; 10 !b for 4t

c = a and b

!c

?b

?a

!b!a

!c

(signal
restoring)

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

!c !c

?a ?b

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

!c

?a

?b

!c

?b

?a

?b ?a

Design Exercise:
Making Lines
Build me a population like this:

292009-03-12Luca Cardelli 292009-03-12

Second-order and Zero-order Regime

?a

E

S

!a

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; E()

and S() = ?a; P()

and P() = ()

run (1 of E() | 1000 of S())

E+S →r E+P
Second-Order Regime
d[S]/dt = -r[E][S]

1000×S, 1×E

@1.0

302009-03-12Luca Cardelli 302009-03-12

?a

E

S

!a
ES

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; delay@1.0; E()

and S() = ?a; P()

and P() = ()

run (1 of E() | 1000 of S())

@1.0

@1.0

1000×S, 1×E

E+S →r ES+P

ES →s E

Zero-Order Regime
d[S]/dt ≅ -1 (by assuming d[ES]/dt =0)

E

S P

τ(s)

?a(r)

!a(r)

Notation

Cascades
!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100×aHi, 1000×bLo, 1000×cLo, rates=1.0

Second-Oder Regime cascade:
a signal amplifier (MAPK)

aHi > 0 ⇒ cHi = max

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

312009-03-12Luca Cardelli 312009-03-12

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 2000 of A()

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

2000×aHi, 1000×bLo, 1000×cLo, rates=1.0

Zero-Oder Regime cascade:
a signal divider!
aHi = max ⇒ cHi = 1/3 max

@1.0

F!b

E

S P

?b

?a

!a

@1.0

@1.0

@1.0

Ultrasensitivity

directive sample 215.0

directive plot S(); P(); E(); ES(); F(); FP()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; delay@1.0; E()

and F() = !b; delay@1.0; F()

run 1000 of S()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) =

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)

E+S → ES+P

F+P → FP+S

ES → E

FP → P

100×F, 0..200×E

Zero-Order Regime
A small E-F inbalance causes
a much larger S-P switch.

322009-03-12Luca Cardelli 322009-03-12

F!b

E

S P

?b

?a

!a

@1.0

@1.0

E+S → E+P

F+P → F+S

100×F, 0..200×E

Second-Order Regime
directive sample 215.0 1000

directive plot S(); P(); E(); F()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; E()

and F() = !b; F()

run 1000 of S()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) =

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)

Design Exercise:
Making Waves

Build me a population like this:

332009-03-12Luca Cardelli 332009-03-12

Nonlinear Transition (NLT)

A

!c

B
?c

A = ?c(s);B

B = !c(s);B

A+B →s B+B

@s

SPiM

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new c@s:chan

let A() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

N.B.: needs at
least 1 B to
“get started”.

342009-03-12Luca Cardelli 342009-03-12

A+B →s B+B

d[A]/dt = -s[A][B]
d[B]/dt = s[A][B]

Matlab
continuous_sys_generator

interval/step [0:0.001:0.0]

(A) dx1/dt = - x1*x2 1000.0

(B) dx2/dt = x1*x2 1.0

Two NLTs: Bell Shape

d[B]/dt = [B]([A]-[C])

A = ?b(1);B

B = !b(1);B ⊕ ?c(1);C

C = !c(1);C

A+B →1 B+B

SPiM

A

!b

B
?b

!c

C
?c

352009-03-12Luca Cardelli 352009-03-12

directive sample 0.0025 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

A+B →1 B+B
B+C →1 C+C

d[A]/dt = -[A][B]
d[B]/dt = [A][B]-[B][C]
d[C]/dt = [B][C]

interval/step [0:0.000001:0.0025]

(A) dx1/dt = -x1*x2 10000.0

(B) dx2/dt = x1*x2 – x2*x3 1.0

(C) dx3/dt = x2*x3 1.0

Matlab
continuous_sys_generator

NLTs in Series: Soliton Propagation
directive sample 0.1 1000

directive plot A1(); A2(); A3(); A4(); A5(); A6(); A7(); A8();
A9(); A10(); A11(); A12(); A13()

val r=1.0 val s=1.0

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan

new a8@s:chan new a9@s:chan new a10@s:chan

new a11@s:chan new a12@s:chan new a13@s:chan

let A1() = do delay@r;A2() or ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; A3()

and A3() = do !a3;A3() or delay@r;A4() or ?a4; A4()

and A4() = do !a4;A4() or delay@r;A5() or ?a5; A5()

and A5() = do !a5;A5() or delay@r;A6() or ?a6; A6()

and A6() = do !a6;A6() or delay@r;A7() or ?a7; A7()

and A7() = do !a7;A7() or delay@r;A8() or ?a8; A8()

and A8() = do !a8;A8() or delay@r;A9() or ?a9; A9()

and A9() = do !a9;A9() or delay@r;A10() or ?a10; A10()

and A10() = do !a10;A10() or delay@r;A11() or ?a11; A11()

and A11() = do !a11;A11() or delay@r;A12() or ?a12; A12()

and A12() = do !a12;A12() or delay@r;A13() or ?a13; A13()

and A13() = !a13;A13()

run 1000 of A1()

A0

!a1

A1

?a1

!an

An

?an?a2

362009-03-12Luca Cardelli 362009-03-12

NLT in a Cycle: Oscillator (unstable)

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new
c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.1 Matlab

372009-03-12Luca Cardelli 372009-03-12

A = !a(s);A ⊕ ?b(s);B

B = !b(s);B ⊕ ?c(s);C

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B
B+C →s C+C
C+A →s A+A

d[A]/dt = -s[A][B]+s[C][A]
d[B]/dt = -s[B][C]+s[A][B]
d[C]/dt = -s[C][A]+s[B][C]

Matlab
continuous_sys_generator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

interval/step [0:0.01:400.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.51

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

ode45
ode23t ode23tb

Oscillator (stable)

directive sample 0.1 1000

directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new a1@s:chan new a2@s:chan new a3@s:chan

let A1() = do !a1;A1() or delay@r;A2() or ?a2; ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; ?a3; A3()

and A3() = do !a3;A3() or delay@r;A1() or ?a1; ?a1; A1()

run 1000 of A1()

A = !a(s);A ⊕ τr;B ⊕ ?b(s);A’

A’ = ?b(s);B

B = !b(s);B ⊕ τr;C ⊕ ?c(s);B’

B’ = ?c(s);C

C = !c(s);C ⊕ τr;A ⊕ ?a(s);C’

C’ = ?a(s);A

A →r B
A+B →s A’+B
A’+B →s B+B
B →r C
B+C →s B’+C
B’+C →s C+C

N.B. this does
not deadlock!

A B

C

!c

!a

?c

?a

!b?b

?a

?b

?c

Sustained
Determinisitic
Oscillation

382009-03-12Luca Cardelli 382009-03-12

B’+C →s C+C
C →r A
C+A →s C’+A
C’+A →s A+A

d[A]/dt = -r[A]-s[A][B]+r[C]+s[C’][A]
d[B]/dt = -r[B]-s[B][C]+r[A]+s[A’][B]
d[C]/dt = -r[C]-s[C][A]+r[B]+s[B’][C]
d[A’]/dt = -s[A’][B] + s[A][B]
d[B’]/dt = -s[B’][C] + s[B][C]
d[C’]/dt = -s[C’][A] + s[C][A]

SPiM

SPiM

Robust Stochastic
Oscillation

interval/step [0:0.0001:0.1]

(A) dx1/dt = -x1 - x1*x2 + x3 + x6*x1 1000.0

(B) dx2/dt = -x2 - x2*x3 + x1 + x4*x2 0.0

(C) dx3/dt = -x3 - x3*x1 + x2 + x5*x3 0.0

(A’) dx4/dt = -x4*x2 + x1*x2 0.0

(B’) dx5/dt = -x5*x3 + x2*x3 0.0

(C’) dx6/dt = -x6*x1 + x3*x1 0.0

Matlab
continuous_sys_generator

Matlab
continuous_sys_generator

Semantics of
Collective Behavior

392009-03-12Luca Cardelli 392009-03-12

Collective Behavior

“Micromodels”: Continuous Time Markov Chains

● The underlying semantics of stochastic π-calculus (and stochastic
interacting automata). Well established in many ways.
o Automata with rates on transitions.

● “The” correct semantics for chemistry, executable.
o Gillespie stochastic simulation algorithm

● Lots of advantages

402009-03-12Luca Cardelli 402009-03-12

● Lots of advantages
o Compositional, compact, mechanistic, etc.

● But do not give a good sense of “collective” properties.
o Yes one can do simulation.

o Yes one can do program analysis.

o Yes one can perhaps do modelchecking.

o But somewhat lacking in “analytical properties” and “predictive power”.

● The classical semantics of collective behavior.
o E.g. kinetic theory of gasses.
o They always ask: “How does you automata model relate to the 75 ODE models in the

literature?”

● Going from processes/automata to ODEs directly:
o In principle: just write down the Rate Equation:

- Let [S] be the “number of processes in state S” as a function of time.
- Define for each state S:

d[S]/dt = (rate of change of the number of processes in state S)

“Macromodels”: Ordinary Differential Equations

412009-03-12Luca Cardelli 412009-03-12

d[S]/dt = (rate of change of the number of processes in state S)

Cumulative rate of transitions from any state S’ to state S, times [S’],
minus cumulative rate of transitions from S to any state S”, times [S].

o Fairly intuitive (rate = inflow minus outflow)

● Going to ODEs indirectly through chemistry
o If we first convert processes to chemical reactions,

then we can convert to ODEs by standard means!
!

The Two Semantic Sides of Chemistry

=
Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

Nondeterministic

Semantics

422009-03-12Luca Cardelli 422009-03-12

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Quantitative Process Semantics

=
Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

Nondeterministic

Semantics

d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

Defined over the
syntax of processes

Accretion Depletion

432009-03-12Luca Cardelli 432009-03-12

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

∂pr(p,t)/∂t = Σi∈ℑ ai(p-vi)⋅pr(p-vi,t) - ai(p)⋅pr(p,t) for all p∈States(E)

Process Master Equation

syntax of processes

Interactions Propensity

Stochastic Processes
& Discrete Chemistry

442009-03-12Luca Cardelli 442009-03-12

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Chemical Reactions (FSRN)

A →r B1 +…+ Bn (n≥0)

A1 + A2 →r B1 +…+ Bn (n≥0)

A + A →r B1 +…+ Bn (n≥0)

Unary Reaction d[A]/dt = -r[A]

Hetero Reaction d[Ai]/dt = -r[A1][A2]

Homeo Reaction d[A]/dt = -2r[A]2

No other reactions!

Exponential Decay

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

... reactions may be either elementary or non-
elementary. Elementary reactions are those
reactions that occur exactly as they are

THE COLLISION THEORY OF REACTION
RATES www.chemguide.co.uk

The chances of all this happening if
your reaction needed a collision
involving more than 2 particles are

(assuming A≠Bi≠Aj for all i,j)

452009-03-12Luca Cardelli 452009-03-12

Trimolecular reactions:

A + B + C →r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B ↔ AB

AB + C → D

reactions that occur exactly as they are
written, without any intermediate steps. These
reactions almost always involve just one or two
reactants. ... Non-elementary reactions involve
a series of two or more elementary reactions.
Many complex environmental reactions are non-
elementary. In general, reactions with an
overall reaction order greater than two, or
reactions with some non-integer reaction order
are non-elementary.

involving more than 2 particles are
remote. All three (or more) particles
would have to arrive at exactly the
same point in space at the same time,
with everything lined up exactly right,
and having enough energy to react.
That's not likely to happen very often!

Enzymatic reactions:

S E r P

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:

E + S ↔ ES

ES → P + E

Chemical Ground Form (CGF)

E ::= 0 ⋮ X=M, E Reagents

M ::= 0 ⋮ π;P ⊕ M Molecules

P ::= 0 ⋮ X | P Solutions

π ::= τ(r) ⋮ ?a(r) ⋮ !a(r) Actions (delay, input, output)

CGF ::= E,P Reagents plus Initial Conditions

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P)
and null molecule (M⊕0 = 0⊕M = M)

(To translate chemistry to processes we
need a bit more than interacting

A stochastic
subset of CCS

(no values, no restriction)

462009-03-12Luca Cardelli 462009-03-12

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

A|A|B|B

Ex: Interacting Automata
(= finite-control CGFs: they use “|” only in initial conditions):

Initial
conditions:
2A and 2B

Automaton in state A

Automaton in state B

and null molecule (M⊕0 = 0⊕M = M)
Each X in E is a distinct species

Each name a is assigned a fixed rate r: a(r)

need a bit more than interacting
automata: we may have “+” on the right
of →, that is we may need “|” after π.)

A

B

!a

?a ?b

!b

From CGF to Chemistry

472009-03-12Luca Cardelli 472009-03-12

From CGF to Chemistry (by example)

!a(r)

?a ?a

A

τ

482009-03-12Luca Cardelli 482009-03-12

?a(r) ?a(r)

B

τ(s)

A = !a(r);A ⊕ ?a(r);B

B = ?a(r);A ⊕ τ(s);A

From CGF to Chemistry (by example)

A

B →s A

A →r A’A’A
τ(r)

!a(r)

?a ?aτ

492009-03-12Luca Cardelli 492009-03-12

B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕ τ(s);A

?a(r) ?a(r)τ(s)

From CGF to Chemistry (by example)

B →s A

A+B →r A+A

A

!a(r)
A

B

A’

B’
?a(r) A+B →r A’+B’

!a(r)

?a ?aτ

502009-03-12Luca Cardelli 502009-03-12

A+B →r A+A

B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕ τ(s);A

?a(r) ?a(r)τ(s)

From CGF to Chemistry (by example)

B →s A

A+B →r A+A

A

?a(r)
A

A’ A”

!a(r)
A+A →2r A’+A”

!a(r)

?a ?aτ

512009-03-12Luca Cardelli 512009-03-12

A+B →r A+A

A+A →2r A+B

B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕ τ(s);A

?a(r) ?a(r)τ(s)

Double rate for
homeo reactions

From CGF to Chemistry (by example)

Interacting
Automata

Discrete
Chemistry

A →r A’A’A
@r

=
Continuous
Chemistry

Process
Algebra

ODE ODE
#A0A | A | ... | A

initial states initial quantities

522009-03-12Luca Cardelli 522009-03-12

?a
A

B

A’

B’
!a A+B →r A’+B’@r

?a
A

A’ A”

!a
A+A →2r A’+A”

@r

=

Discrete
Chemistry

Algebra

CTMC CTMC

From CGF to Chemistry: Ch(E)

Chemical reactions for E,P: (N.B.: <...> are reaction tags to obtain multiplicity of reactions,

E.X.i ≝ the i-th
Å-summand of the
molecule M
associated with the
X reagent of E

E ::= 0 ⋮ X=M, E Reagents

M ::= 0 ⋮ π;P ⊕ M Molecules

P ::= 0 ⋮ X | P Solutions

π ::= τ(r) ⋮ ?a(r) ⋮ !a(r) Interactions (delay, input, output)

CGF ::= E,P Reagents plus Initial Conditions

532009-03-12Luca Cardelli 532009-03-12

and P is P with all the | changed to +)

Ch(E) :=

{(<X.i>: X →r P) s.t. E.X.i = τ(r);P} ∪

{(<X.i,Y.j>: X + Y →r P + Q) s.t. X≠Y, E.X.i = ?a(r);P, E.Y.j = !a(r);Q} ∪

{(<X.i,X.j>: X + X →2r P + Q) s.t. E.X.i = ?a(r);P, E.X.j = !a(r);Q}

Initial conditions for P:

Ch(P) := P

Entangled vs Detangled

A

!a

?a
B

C

B’

C’
?a

a: A+B →r A+B’

a: A+C →r A+C’

(a@r)

?b
B

C

B’

C’
?c

b: A+B →r A+B’

c: A+C →r A+C’!b !c
A

(b@r)

(c@r)

A = !a;A

B = ?a;B’

C = ?a;C’

B’ = 0

C’ = 0

A = !b;A ⊕ !c;A

B = ?b;B’

C = ?c;C’

B’ = 0

C’ = 0

Entangled

542009-03-12Luca Cardelli 542009-03-12

Detangled automata are in simple
correspondence with chemistry.

Entangled: Two reactions
on one channel

Detangled: Two reactions
on two separate

channels

We need a semantics of automata that identifies
automata that have the “same chemistry”.

No traditional process algebra equivalence is like this!

Entangled automata lead to more
compact models than in chemistry.

Some Syntactic Properties

● C and Ch(Pi(C)) have the same reactions

o (and their reaction labels are in bijection)

● Def: E is detangled if each channel appears once as ?a and once as !a.

● If C is a system of chemical reactions then Pi(C) is detangled.

o (hence chemical reactions embed into a subclass of CGFs)

● Hence for any E, we have that Pi(Ch(E)) is detangled.

552009-03-12Luca Cardelli 552009-03-12

● Hence for any E, we have that Pi(Ch(E)) is detangled.

- (E and Pi(Ch(E)) are “equivalent” CGFs, but that has to be shown later)

● Def: E,P is automata form if “|” occurs only (other than “|0”) in P.

● Def: Detangle(E) is defined from Pi(Ch(E)) by replacing any occurrence pairs
?a(r);(X|Y|0) and !a(r);0 with ?a(r);(X|0) and !a(r);(Y|0).

● If E is in automata form then Detangle(E) is (detangled and) in automata form

o (but Pi(Ch(E)) may not be)

Entangled vs detangled

?a

?a

X1

X0

!a

Y1

Y0

?a

!a

!a

?a00

X1

X0

Y1

Y0

?a01
?a02

?a10
?a11

?a20
?a21
?a22

!a00
!a01
!a02

!a10
!a11

!a20
!a21
!a22

562009-03-12Luca Cardelli 562009-03-12

Detangle(E3)

(closely related to
Pi(Ch(E3)))

X2 Y2

E3

X2 Y2

?a11
?a12

!a11
!a12

Chemical Parametric Form (CPF)

E ::= 0 ⋮ X(p)=M, E Reagents

M ::= 0 ⋮ π;P ⊕ M Molecules

P ::= 0 ⋮ X(p) | P Solutions

π ::= τ(r) ⋮ ?a(r)(p) ⋮ !a(r)(p) Actions

CPF::= E,P with initial conditions

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P)

572009-03-12Luca Cardelli 572009-03-12

0 is the null solution (P|0 = 0|P = P)
and null molecule (M⊕0 = 0⊕M = M)

Each X in E is a distinct species

p are vectors of names
p are vectors of distinct names when in binding position
Each free name a in E is assigned a fixed rate r: a(r)

A translation from CPF to CGF exists
(expanding all possible instantiation of
parameters from the initial conditions)

An incremental translation algorithm exists
(expanding on demand from initial conditions)

Not bounded-state systems.

Not finite-control systems.

But still finite-species systems.

Example:

Neg(a,b) = ?a; Inh(a,b) ⊕ τe; (Tr(b) | Neg(a,b))

Inh(a,b) = τh; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τd; 0

Neg(x,x)

CPF to CGF: Handling Parameters

Consider first the CPF subset with no communication (pure ?a, !a).

/(π1;P1 ⊕ … ⊕ πn;Pn) =def π1;/(P1) ⊕ … ⊕ πn;/(Pn)

/(X1(p1) | … | Xn(pn)) =def X1/p1 | … | Xn/pn

Grounding (replace parameters with constants)
where X/p is a name in bijection with <X,p>
(each X/p is seen as a separate species)

Let N be the set of free names occurring in E.

E ::= X1(p1)=M1, …, Xn(pn)=Mn

M ::= π1;P1 ⊕ … ⊕ πn;Pn

P ::= X1(p1) | … | Xn(pn)

π ::= τr ?a !a

582009-03-12Luca Cardelli 582009-03-12

EG is a CGF! To obtain the chemical reactions ChP(E), just compute ChG(EG)

EG := {(X/q = /(M{p←q})) s.t. (X(p) = M) ∈ E and q ∈ N#p}

PG := /P (simply ground the given initial conditions once)

Let N be the set of free names occurring in E.

EG is the Parametric Explosion of E (still a finite species system)
computed by replacing parameters with all combinations of free names in E

ChP(E) = ChG(EG)

CPF to CGF: Handling Communication

/N(τr;P) = τr; /N(P)

/ (!a (p);P) = !a/p ; / (P)

E ::= X1(p1)=M1, …, Xn(pn)=Mn

M ::= π1;P1 ⊕ … ⊕ πn;Pn
P ::= X1(p1) | … | Xn(pn)

π ::= τr ?a(p) !a(p)

Grounding (replace parameters with constants)
just one main change: now also convert each input parameter
into a ground choice of all possible inputs

N is the set of free names in E,P

#p is the length of p
n/p is a name in bijection with <n,p>

X/p is a name in bijection with <X,p>

(each X/p is seen as a separate species)

592009-03-12Luca Cardelli 592009-03-12

/N(!a(r)(p);P) = !a/p(r); /N(P)

/N(?a(r)(p);P) = ⊕(q∈N#p) of ?a/q(r); /N(P{p←q})

/N(π1;P1 ⊕ … ⊕ πn;Pn) = /N(π1;P1) ⊕ … ⊕ /N(πn;Pn)

/N(X1(p1) | … | Xn(pn)) = X1/p1 | … | Xn/pn

EG is a again a CGF!Ch(E) = ChG(EG)

EG := {(X/q = /N(M{p←q})) s.t. (X(p) = M) ∈ E and q ∈ N#p}

PG := /N(P) (simply ground the given initial conditions once)

EG is again the Parametric Explosion of E

CPF to CGF Translation. Ex: Neg(x,x)
E =

Neg(a,b) = ?a; Inh(a,b) ⊕ τe; (Tr(b) | Neg(a,b))

Inh(a,b) = τh; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τd; 0

Neg(x,x)

----- initialization -----

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τe; (Tr/x | Neg/x,x)}

----- iteration 1 -----

C := {Neg/x,x →e Tr/x + Neg/x,x }

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τe; (Tr/x | Neg/x,x)

Tr/x = !x; Tr/x ⊕ τ ; 0}

----- iteration 3 -----

C := {Neg/x,x →e Tr/x + Neg/x,x

Tr/x →d 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x

Inh/x,x →h Neg/x,x}

Ec:= no change

----- termination -----

Neg/x,x →e Tr/x + Neg/x,x

Tr/x →d 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x

Inh/x,x →h Neg/x,x

602009-03-12Luca Cardelli 602009-03-12

Tr/x = !x; Tr/x ⊕ τd; 0}

----- iteration 2 -----

C := {Neg/x,x →e Tr/x + Neg/x,x

Tr/x →d 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x }

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τe; (Tr/x | Neg/x,x)

Tr/x = !x; Tr/x ⊕ τd; 0

Inh/x,x = τh; Neg/x,x}

Inh/x,x →h Neg/x,x

Neg/x,x

From Chemistry to CGF

612009-03-12Luca Cardelli 612009-03-12

From Chemistry to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

x(s) b(r) c(r)

A

B
Half-rate for

homeo reactions

Unique reaction
names

Species

Reactions names

622009-03-12Luca Cardelli 622009-03-12

From Chemistry to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >.

x(s) b(r) c(r)

A

B τ;A

632009-03-12Luca Cardelli 632009-03-12

add τ;Pi to <X,vii>.

From FSRN to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

x(s) b(r) c(r)

A ?;A|A

B τ;A !;0

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >.

642009-03-12Luca Cardelli 642009-03-12

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

From FSRN to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

x(s) b(r) c(r)

A ?;A|A
?;A|B
!;0

B τ;A !;0

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >.

652009-03-12Luca Cardelli 652009-03-12

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

From FSRN to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >. A

x(s) b(r) c(r)

A ?;A|A
?;A|B
!;0

B τ;A !;0

!c

?b(r)

662009-03-12Luca Cardelli 662009-03-12

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);(A|A) ⊕ ?c(r);(A|B) ⊕ !c(r);0

B = τ(s);A ⊕ !b(r);0

!b(r)

?c(r)

B

A

τ(s)

!c(r)

From FSRN to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >. A

x(s) b(r) c(r)

A ?;A
?;A|B
!;0

B τ;A !;A

?b(r)

!c

672009-03-12Luca Cardelli 672009-03-12

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);A ⊕ ?c(r);(A|B) ⊕ !c(r);0

B = τ(s);A ⊕ !b(r);A

B

A

!b(r)

?c(r)

τ(s)

!c(r)

From FSRN to CGF (by example)

x: B →s A

b: A+B →r A+A

c: A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >. A

x(s) b(r) c(r)

A ?;A
?;B

!;A

B τ;A !;A

?b(r)

!c

682009-03-12Luca Cardelli 682009-03-12

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);A ⊕ ?c(r);B ⊕ !c(r);A

B = τ(s);A ⊕ !b(r);A

B

A

!b(r)

?c(r)

τ(s)

!c(r)

From Chemistry to Automata (by example)

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

v1(k1) v2(k2) v3(k3) v4(k4/2)

A ?;(C|C) ?;D

B !;0

C !;0 τ;(E|F)

D

E

?;B

channels and rates
(1 per reaction)

d
ef
in
it
io
ns

(1
 p
e
r
sp
e
ci
e
s)

Interaction
Matrix

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;P to <X,v >.

Half-rate for
homeo reactions

692009-03-12Luca Cardelli 692009-03-12

F
?;B

!;0

(1
 p
e
r
sp
e
ci
e
s)

add τ;Pi to <X,vii>.

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi> 2: Read the result by rows:

A = ?v1(k1);(C|C) ⊕ ?v2(k2);D

B = !v1(k1);0

C = !v2(k2);0 ⊕ τk3;(E|F)

D = 0

E = 0

F = ?v4(k4/2);B ⊕ !v4(k4/2);0

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

?v1
A

C

D

!v2

!v2 F

E B

!v4
?v4

!v1

From Chemistry to CGF: Pi(C)

Pi(C) = {(X = ⊕((v: X →k P)∈C) of (τ(k);P) ⊕

⊕((v: X+Y →k P)∈C and Y≠X) of (?v(k);P) ⊕

⊕((v: Y+X →k P)∈C and Y≠X) of (!v(k);0) ⊕

⊕((v: X+X →k P)∈C) of (?v ;P ⊕ !v ;0))

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

v: X →r Y1 +…+ Yn + 0 Unary Reaction

v: X1 + X2→r Y1 +…+ Yn + 0 Binary Reaction

702009-03-12Luca Cardelli 702009-03-12

⊕((v: X+X →k P)∈C) of (?v(k/2);P ⊕ !v(k/2);0))

s.t. X is a species in C}

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Discrete-State
Semantics

712009-03-12Luca Cardelli 712009-03-12

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Discrete Semantics of Reactions

=
Continuous
Chemistry

Process
Algebra

ODE ODE

A+B →r A+A

A+B →r B+B

A+B+B

Syntax:

722009-03-12Luca Cardelli 722009-03-12

=

Discrete
Chemistry

Algebra

CTMC CTMC

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:

Discrete Semantics of Reagents

=
Continuous
Chemistry

Process
Algebra

ODE ODE

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Syntax:

732009-03-12Luca Cardelli 732009-03-12

=

Discrete
Chemistry

Algebra

CTMC CTMC

B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:

Discrete State Equivalence

● Def: � is equivalent CTMC’s (isomorphic graphs with same rates).

● Thm: E � Ch(E)

● Thm: C � Pi(C)

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE =
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

742009-03-12Luca Cardelli 742009-03-12

● For each E there is an E’ � E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ � E that is detangled and
in automata form (E’ = Detangle(E)).

=CTMC CTMC =CTMC CTMC

Interacting Automata = Discrete Chemistry

This is enough to establish that the process
algebra is really faithful to the chemistry.

But CTMC are not the “ultimate semantics”
because there are still questions of when two
different CTMCs are actually equivalent (e.g.
“lumping”).

=
Continuous
Chemistry

Process
Algebra

ODE ODE

Discrete
Chemistry

752009-03-12Luca Cardelli 752009-03-12

The “ultimate semantics” of chemistry is the
Chemical Master Equation (derivable from the
Chapman-Kolmogorov equation of the CTMC).

=CTMC CTMC

Q?

http://LucaCardelli.name

762009-03-12Luca Cardelli 762009-03-12

Q?

