
Exercise 6: Wet Vending Machine Controller 

A coffee vending machine controller, Vend, accepts two coins for coffee; 
an ok is given after the first coin and then either a second coin (for 
coffee) or an abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Exercise: compile that to the Combinatorial Strand Algebra; if you do it 
by the U(P) algorithm you can then heavily hand-optimize it.

682009-05-08Luca Cardelli 682009-05-08 682009-05-08Luca Cardelli

by the U(P) algorithm you can then heavily hand-optimize it.

Each Vend iteration spawns two branches, Coffee and Refund, waiting 
for either coin or abort. The branch not taken in the mutual exclusion is 
left behind; this could skew the system towards one population of 
branches. Therefore, when the Coffee branch is chosen and the system 
is reset to Vend, we also spawn another Coffee branch to dynamically 
balance the Refund branch that was not chosen; conversely for Refund.

Standard questions can be asked: what happens if somebody inserts 
three coins very quickly? Or somebody presses refund twice? Etc.


