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Introduction

So far:

• Large-scale Internet-based systems can benefit a lot from
(sometimes massive) replication

• Assumption: there will be trusted servers to host replicated
content

Question: What are the issues when dealing with collaborative
decentralized systems, such as, for example, collaborative
content distribution networks.

Note: Many peer-to-peer systems fall into this category.

2 of 47

3 of 47

Collaboration fundamentals

Issue: How can we enforce several parties (unknown to each
other) to help run a distributed system?

• Traditional: Be able to continuously monitor behavior, and
take measures in the case of misbehaving participants:
– Withdraw from collaboration (i.e., defeat)
– Punish misbehaving participant (i.e., enforce collaboration)

• Alternative: Provide incentives so that participants want to
collaborate.

Note: Sometimes it is sufficient to rely on altruistic behavior by
participants (e.g., Wikipedia)
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Evolution of cooperation
Prisoner’s dilemma: Two players, two options (cooperate or
defect). Each player must take a decision without knowing what
the other will do. There are four payoffs:

T : Temptation to defect
R: Reward for co-operation
P: Punishment for mutual defect
S: Sucker’s payoff when only one defects

Constraint: T > R > P > S. We can get something like:
Player 2

Cooperate Defect

Player 1 Cooperate R1 = 3, R2 = 3 S1 = 0, T2 = 5
Defect T1 = 5, S2 = 0 P1 = 1, P2 = 1

Note: Total payoff is highest when co-operating
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Iterative Prisoner’s Dilemma

Situation: We let two parties repeat the game, taking the result
from the previous game into account. For co-operation to
emerge, we also demand 2R > T +S.

Strategy: Somewhat surprisingly, the simplest strategy turns out
to be the best: tit-for-tat:

• Cooperate on the first interaction (i.e., be optimistic)

• Subsequently do the same as what your partner did (i.e.,
reciprocate)
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Cooperation in practice
For cooperation to emerge in practice, the following conditions
need to be met:

1. Parties should be able to recognize each other

2. There should be repeated interaction between parties

3. Interactions should be durable or frequent

4. The strategy followed by the other party should be transparent

Note: Often, almost each of these conditions are violated in
“collaborative” (peer-to-peer) systems! We often need small,
persistent groups for cooperation to emerge.
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Example: BitTorrent

storing

Swarm:

Node 1

Node 2

Node N

.torrent file

for F

A BitTorrent

Web page

List of nodes

parts of) F(

Web server File server Tracker

Client node

K out of N nodes

Lookup(F)

Ref. to

file

server

Ref. to

tracker

Pieces, blocks Files are split into pieces, in turn split into blocks
Peer set List of peers to which a node has open TCP connections
Leecher, seeder Leechers are providing blocks, but also need blocks to

complete. A seeder has all the necessary blocks and con-
tinues to provide them (altruistic behavior).

Potential set Peers in peer set that have at least one block to trade.
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BitTorrent at work
• A peer P locates a tracker T for file F . T sends randomly selected set of

peers PS[P]. P request blocks from PS[P].

• A peer Q regularly computes best uploading peers in PS[Q] and chokes the
ones not uploading to Q.

• A peer Q regularly unchokes a randomly selected peer P from S(F): Q will
altruistically send blocks to P when requested for.

• A peer P requests blocks from the rarest available pieces in PS[P]. Note:
this requires exchange of information on available pieces.

• Peer sets are regularly updated by letting P contact its tracker T .

Note: BitTorrent essentially follows a tit-for-tat strategy; there are
many details to consider to make the protocol lead to
collaboration.
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Amortized Tit-for-Tat

Observation: BitTorrent plays tit-for-tat (1) on the basis of
content exchange and (2) cannot preserve information between
sessions.

Also note: In environments with asymmetric links (e.g., ADSL),
download speed is often limited by upload capacity⇒ slow
downloads.

Alternative: amortized tit-for-tat:

• Exchange bandwidth instead of content

• Provide bandwidth now, and try to get help the next time you need it
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Amortized TFT at work

Collector

Helper

Helper

Regular
BitTorrent

Offered upload
capacity

Note: Helpers use their upload capacity to (1) trade blocks with
regular BT nodes and (2) pass blocks to collector.
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Performance of amortized TFT

N # leechers
S # seeders
K # blocks file has been split into (1 piece = 1 block)
Lb # peers having block b (Lb1 ≈ Lb2)
ni # blocks currently held by Pi

mi,b 1 if Pi has block b, otherwise 0
µ Upload capacity of single peer.

Assume the same for all peers
c Download capacity, assume c≥ µ
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Effective download of collector

N # leechers K # file blocks ni # blocks at Pi µ upload cap.
S # seeders L # peers /w block b mi,b 1 iff b @ Pi c download cap.

• S seeders equally divide µ over N leechers

• Collector can use full µ capacity to barter with BT peers.

• Helper i provides fraction fi of µ for helping download; h helpers

d =
S
N
·µ+µ+

h

∑
i=1

fi ·µ

Note: For helpers to be useful, we assume that c > Sµ/N +µ
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Effective download of collector

N # leechers K # file blocks ni # blocks at Pi µ upload cap.
S # seeders L # peers /w block b mi,b 1 iff b @ Pi c download cap.

• Helper hi has effective download of Sµ/N +(1− fi)µ.

• Helper cannot transfer data to collector faster than it is getting
data, so that fi ·µ≤ Sµ/N +(1− fi)µ.

• Conclusion: maximum is reached when fi = (S ·N +1)/2.

dmax =
(

S
N

+1
)(

1+
h
2

)
µ≤ c⇒ hopt = 2

(
cN

(S +N)µ
−1

)
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Speedup with helpers

N # leechers K # file blocks ni # blocks at Pi µ upload cap.
S # seeders L # peers /w block b mi,b 1 iff b @ Pi c download cap.

Observation: We can now easily determine how much a
collector can gain by using helpers. For the speedup u we find:

u =
d

S/N ·µ+µ
=

{
1+ h

2 if h < hopt

cN
(S+N)µ otherwise

Note: More helpers also introduces overhead:

• In BitTorrent, downloads are slow in the beginning at the end.

• With helpers, we are effectively partitioning what needs to be downloaded
⇒ more helpers, smaller subfiles, relatively longer start and end phases.
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Speedup with helpers

N # leechers K # file blocks ni # blocks at Pi µ upload cap.
S # seeders L # peers /w block b mi,b 1 iff b @ Pi c download cap.

Observation: Peer i can barter block k1 for block k2 at peer j iff:

mi,k1(1−m j,k2)m j,k2(1−mi,k2) = 1

Let Bi be total number of block exchanges:

Bi = ∑
j,k1,k2

mi,k1(1−m j,k2)m j,k2(1−mi,k2)
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Speedup with helpers

N # leechers K # file blocks ni # blocks at Pi µ upload cap.
S # seeders L # peers /w block b mi,b 1 iff b @ Pi c download cap.

Assume P[mi,k = 1] = ni/K (and thus P[mi,k = 0] = (1−ni/K)):

E(Bi) = E
(
∑ j,k1,k2

mi,k1(1−m j,k2)m j,k2(1−mi,k2)
)

= ∑ j,k1,k2

(
P[mi,k1 = 1]P[m j,k1 = 0]P[m j,k2 = 1]P[mi,k2 = 0]

)
= ∑ j,k1,k2

(ni
K(1− n j

K )n j
K (1− ni

K)
)

= ni(K−ni)
K2 ∑ j ∑k1,k2

n j(K−n j)
K2

= ni(K−ni)
K2 ∑ j(n jK−n2

j) = ni(K−ni)
K2 (K2L−∑ j n2

j)

= ni(K−ni)(L−∑ j
[n j

K

]2)

⇒ maximal when ni = (K/2)
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Improvements

Redundant block download: If download at helper H starts to
drop, H increases its attractiveness by downloading blocks the
collector already has⇒ increases attractiveness for bartering.

Sharing swarm information: Pass information on new peers
and the blocks held by the collector and other peers among the
helping nodes⇒ considerable speedup during start phase.
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Performance

Experiment: Simply set up a combination of a collector with
helpers and attach to existing BitTorrent swarms.

Upload/download Speedup Optimal number of helpers
bandwidth [kbps] Theoretical Measured Theoretical Measured

682/1024 1.36 1.27 1 1
512/1024 1.82 1.72 2 2
256/1024 3.64 3.25 6 7
128/1024 7.27 6.4 14 17
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Performance

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 5000 10000 15000 20000 25000

collector

helpers no. 1 to 6

original BT clientc
o
lle

c
to

r o
b
ta

in
e
d
 e

n
tire

 file

N
u
m

b
e
r 

o
f 
d
o
w

n
lo

a
d
e
d
 b

lo
c
k
s

Time[sec]

19 of 47

20 of 47

Getting helpers

Issue: Why would any peer want to help: during a session a
helper is not getting anything in return⇒ we need to look at
mechanism design.

• Each peer p maintains a local view V [p] of randomly selected peers from
the network (e.g., by means of a peer sampling service).

• Each peer p maintains a set C[p] of contributors (i.e., helpers it once
made use of)

• Each peer p maintains a set B[p] of borrowers (i.e., collectors to which it
contributed bandwidth)
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Algorithm: explore

Basics: We consider an explore and a select phase:
{np : maximal # borrowers from peer p}

explore:
while (B[p] < np)∧ (V [p]\C[p] 6= /0) do

select random peer q ∈V [p]\C[p]
C[q]←C[q]∪{p} {p offers services to q}
B[p]← B[p]∪{q} {q may become borrower of p’s bandwidth}

end while

Essence: explore potential new peers to offer bandwidth to, and
later select the best ones.
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Algorithm: select
select:
{rp : maximal # randomly selected borrowers from p}
B[p]←{q ∈C[p] | q offered nonzero contribution}
Sort B[p] according to descending bandwidth
while |B[p]|> np− rp do

Remove lowest-ranked peer from B[p]
end while

Essence: Give preference to helping peers that have helped you
in the past.

Note: When a peer p wants download help, it can select peers
from C[p] according to some specific strategy (notably: peers to
which p has provided help before).
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Analysis

Input: Contribution ci of peer i: average amount of bandwidth to
borrowers. Gain gi: obtained bandwidth from contributors.

Without proof: It can be shown that (1) ci > c j⇒ gi ≥ g j, and
(2) maximize gain by contributing entire upload bandwidth.

Borrower set size: Intuitively, we would like to keep the values
np small, in order to minimize risk of free-riding.

n : size of borrower set (same for all peers)
1/λ : average length of idle period (same for all peers)
1/µ : average length requesting period (same for all peers)

Assumption: helpers divide their bandwidth evenly among
borrowers.
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Analysis

Bandwidth utilization un: fraction of idle time when bandwidth is
completely used by borrowers.

Observation: Evolution of # borrowers can be modeled as a
birth-death process (with state representing # borrowers):

nl( -n i+1)l (n-i)l

m (i+1)m im nm

l

0 ni.... ....

Required: (n− i)λπi = iµπi+1⇒ πi =
(n

i

)(
λ

µ

)i
π0
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Analysis

Condition: ∑
n
i=0 πi = 1⇒

π0

n

∑
i=0

(
n
i

)(
λ

µ

)i

= π0

(
1+

λ

µ

)n

= 1

Assumption: Bandwidth is fully utilized when there is at least
one borrower⇒

un = 1−π0 = 1−
(

1+
λ

µ

)−n
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Analysis

l/m = 3/1, 2/1, 1/1, 1/2, 1/3

n

Conclusion: We can keep n small while still attaining high
utilization.
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Collaborative CDNs

Issue: Replication for performance requires content to be placed
at remote servers. Question: How can we enforce collaboration
between servers that form a CCDN?

Specific case: Rather than considering all kinds of replication
strategies, focus on simple case:

Peers need each other’s help with bursty traffic in order to
guarantee specific level of QoS.

Note: Matters are complicated by the fact that we demand that
clients are left unmodified.
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Enforcing collaboration

• Servers need to recognize each other and have repeated
interactions⇒ Fix the topology of the overlay.

• Deploy tit-for-tat⇒ set up accounting

• Trust by check: enable verification of reported service
provisioning by collaborative servers.
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Fixing the topology

Approach: Simply have a centralized server hand out (1) IDs
and (2) list of neighbors.

• When joining the system, a server places itself in the topology,
and notifies its neighbors by handing over a certificate

• Is also a solution to Sybil attacks, whereby nodes can
generate IDs at will.
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Accounting

Observation: With a fixed set of neighbors, accounting has
become much easier. Maintain two sets of data:

• Volume of data exchanged: Each peer p keeps track of two
variables, for each of its neighbors q:
– Consp[q]: total amount of data served by q on behalf of p
– Provp[q]: total amount of data served by p on behalf of q

Requirement: Consp[q]−Provp[q] < Mdata
p [q]

• Data rate exchanged: Keep track of rate at which clients
where served. Note: we need to motivate servers to provide
good quality of service.
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Accounting: data rate served
Issue: Do we keep an accurate account of rates and reciprocate
exactly those? Not a good strategy, as it is far too rigid.

• RateConsp[q]: trend for rate served by q on behalf of p

• RateProvp[q]: trend for rate served by p on behalf of q

• Both values are regularly updated:

RateConsp[q] = α ·RateConsNowp[q]+ (1−α) ·RateConsp[q]
RateProvp[q] = α ·RateProvNowp[q]+ (1−α) ·RateProvp[q]

• RateAssignedx[y]: Rate assigned by x to serve clients of y

RateConsp[q]/RateProvp[q] < Mrate
p [q] ⇒ punish q

RateConsp[q]/RateProvp[q] > Mrate
p [q] ⇒ reward q

Question: What are reasonable values for Mrate
p [q]?
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Building trust

Observation: We can make the various limits Mp[q] dependent
on the observed behavior of a peer:

• Consp[q] increases⇒Mdata
p [q]←Mdata

p [q]+∆Consp[q] · γincr

• Consp[q] decreases⇒Mdata
p [q]←Mdata

p [q] · γdecr

Important: decrease of Mdata
p [q] should be larger than increase

with same value for |∆Consp[q]|. Other adaptations of Mdata
p [q] are

also possible.

Big question: How do we verify claims from remote peers
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Checking peers

Basic idea: Redirect clients to a peer, but break in into the
connection to monitor progress and verify that progress against
reports from peer:

• Client C contacts origin server O; O redirects C to peer P.

• After some time, O requests handover of (C,P) TCP connection.

• C will send data request with associated sequence number to O⇒ O can
verify progress against reports from P.

• If all is well, connection can be handed back to P.

Issue: How to implement client-transparent TCP handoffs?
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Solution: MIPv6
Basic idea: We can develop distributed servers with stable IPv6
addresses.

APP

TCP

MIPv6

IP

Believes it is

connected to X

Believes location

of X is CA1

Client 1

APP

TCP

MIPv6

IP

Believes it is

connected to X

Believes location

of X is CA2

Client 2

Server 1

Server 2

Internet

Knows that Cient 1

believes it is X

Knows that Cient 2

believes it is X

Distributed server XBelieves server

has address HA

Believes server

has address HA

Access point

with address CA1

Access point

with address CA2
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Distributed servers

Essence: Clients having MIPv6 can transparently set up a
connection to any peer:

• Client C sets up connection to IPv6 home address HA

• HA is maintained by a (network-level) home agent, which hands off the
connection to a registered care-of address CA.

• C can then apply route optimization by directly forwarding packets to
address CA (i.e., without the handoff through the home agent).

Collaborative CDNs: Origin server maintains a home address,
but hands off connections to address of collaborating peer.

Effect: Origin server and peer appear as one server.
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Side note: handoff details
Issue: efficiently handing off an entire socket:
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to remove

DONE

1. Send init message and freeze socket: drop incoming messages (will be
retransmitted later).

2. Start handing off connection by transferring state.

3. Send done message; take over care-of address, and continue where TCP
connection was frozen.
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Handoff optimization
Issue: If donor hands off connection immediately after a send()
call, the socket buffer will be full⇒ wait until buffered data has
been sent to the client (i.e., empty TCP buffers).

LCS: client-to-server latency
LSS: server-to-server latency
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Evaluation
Question: Do we actually need help in the case of bursty traffic?

( )6,30

(6,15)

(6,5) No burstiness

Average HTTP request rate

A
v
e
ra

g
e
 l
a
te

n
c
y

(B,F): F% of the time, we
have a burst B times
the average rate.

Collaborators are al-
truistic

Observation: With bursts, the server’s performance degrades
worse than linear.
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Enforcing collaboration

Comparison: Consider the (6,15) burstiness case:

Forced collaboration with 70% free riding

Average HTTP request rate

A
v
e

ra
g

e
 l
a
te

n
c
y

Optimistic collaboration
with 70% free riding

Standalone

Altruistic collaboration
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Enforcing collaboration

Comparison: The (6,15) burstiness case with 20% free riding:

Forced collaboration with 20% free riding

Average HTTP request rate

A
v
e

ra
g

e
 l
a
te

n
c
y

Optimistic collaboration
with 20% free riding

Standalone

Altruistic collaboration
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Food for thought

So far: We’ve been discussing various mechanisms to enforce or
promote collaboration among peers. A realistic question is: do
we really need such mechanisms?

• Wikipedia relies entirely on altruistic collaboration (and some centralized
control)

• BitTorrent networks often exhibit altruistic seeding behavior: we may need
only simple mechanisms to enforce collaboration

• Social and economic factors appear to influence seeding behavior

Observation: It appears there is no need to be extremely
pessimistic.
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Artificial Social Networks

Question: Can we let computers form a network in which
collaboration prevails?

Experiment: Consider a large collection of nodes organized in
an unstructured peer-to-peer network:

• Each node i has an observable utility ui.

• Each node i follows a published strategy si, which may change over time.

Basics: Copy the strategy from nodes that are apparently doing
better than you (i.e., their utility is higher).
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The SLACER algorithm
Select a random node j {e.g., using a peer sampling service}
if ume ≤ u j then

sme← s j {copy j’s strategy}
for all k ∈ N(me) do

With probability P(W ): remove k from N(me)
end for
N(me)← N(me)∪N( j)∪{ j}
Remove random elements from N(me) until |N(me)|= c
With probability P(S): change strategy sme

With probability P(L):
for all k ∈ Nme do

With probability P(W ): remove k from N(me)
N(me)← N(me)∪{random node x}

end for
end ifume← 0
Note: N(i) is the current set of neighbors of i
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SLACER effects

Application: Play the prisoner’s dilemma game, with two
strategies: collaborate or defect.

• Utility is expressed in terms of payoffs T > R > P > S
(reward single defect; reward collaboration; punishment mutual defect;
sucker’s payoff).

• Performance metrics: average path length, cluster coefficient

• Additional metric: cooperatively connected path:

– i and j are CCP-connected if there is a (i, j) path with only cooperative
intermediate nodes.

– Measure the fraction of CCP-connected node pairs.
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Evaluation

Initially: Random network and all strategies set to defect.
P(S) = 0.001; P(L) = 0.01; View list size c = 20.
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Observation: With the right payoffs, collaboration results
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Conclusions

• There is a lot to gain from collaboration in distributed systems

• Tit-for-tat mechanisms appear to be workable in practice

• Issue: designing mechanisms by which strategies can be
checked

• Issue: unclear to what extent only technical solutions are
needed

Overall: There is a lot of room for research
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