
Internet-based
Collaborative Decentralized Systems

Replicating for performance

Maarten van Steen

2 of 47

Introduction
Observation: We can distinguish three scaling dimensions
when talking about distributed systems:

Numerical: many users, many resources

Geographical: components comprising the system are placed
far apart

Administrative: the system is simultaneously managed by
many different administrative organizations

Problem areas: numerical scalability can often be dealt with by
throwing in more hardware. Geographical and notably
administrative scalability pose problems.

2 of 47

3 of 47

Scaling Techniques (1/2)

Distribution: Spread the work that a distributed system needs to
do across multiple machines. Distribution is good for numerical
scalability:

• The Domain Name System (DNS): nicely distributed name
space

• The World Wide Web: “perfectly” distributed collection of Web
pages

3 of 47

4 of 47

Scaling Techniques (2/2)

Replication/Caching: Place copies of your data close to where
they are needed, so that the client-perceived performance is
satisfactory. Replication is good for geographical scalability:

• Caching Web proxy servers: reduce client access times

• Content Delivery Networks (CDNs): provide high availability
and good access times for large data files

4 of 47

5 of 47

Scaling Technique Problems (1/2)

Distribution: Take into account that data may have been placed
really far apart.

Distribution may introduce a geographical scalability
problem

Replication: When having multiple copies around, updates need
to be “immediately” propagated to maintain consistency.

Caching and replication may introduce a global
synchronization problem

Note: Things just get worse with concurrent updates.

5 of 47

6 of 47

Scaling Technique Problems (2/2)

Solution: We need to take into account how distributed and
replicated data are used:

• Placement of data should be such that we can still exploit
locality

• Replication should be done in a way that frequent global
synchronization can be avoided (i.e., try to go for weak
consistency)

Observation: We are talking about application-specific
solutions for building scalable systems

6 of 47

7 of 47

An Experiment (1/3)

Research question: Does it make sense to distribute each Web
page according to its own best strategy, instead of applying a
single, overall distribution strategy to all Web pages?

Edge

server
Edge
server

Edge
server

Origin
server

Client Client

Client

ClientClient Client

Client

ClientClient

Client

Client

Client

Client

Client

Client

Clients in an
unknown AS

AS 1 AS 2 AS 3

AS of document’s
origin server

7 of 47

8 of 47

An Experiment (2/3)

• We collected traces on requests and updates for all Web
pages from two different servers (in Amsterdam and Erlangen)

• For each request, we checked:
– From which autonomous system it came
– What the average delay was to that client
– What the average bandwidth was to the client’s AS (randomly taking 5

clients from that AS)

• Pages that were requested less than 10 times were removed
from the experiment.

• We replayed the trace file for many different system
configurations, and many different distribution scenarios.

8 of 47

9 of 47

An Experiment (3/3)

Issue Site 1 Site 2
Start date 13/9/1999 20/3/2000
End date 18/12/1999 11/9/2000
Duration (days) 96 175
Number of documents 33,266 22,637
Number of requests 4,858,369 1,599,777
Number of updates 11,612 3338
Number of ASes 2567 1480

9 of 47

10 of 47

Distinguished Strategies: Caching
Abbr. Name Description
NR No replication No replication or caching takes place. All

clients forward their requests directly to the
origin server.

CV Verification Edge servers cache documents. At each
subsequent request, the origin server is
contacted for revalidation.

CLV Limited validity Edge servers cache documents. A cached
document has an associated expiration
time before it becomes invalid and is
removed from the cache.

CDV Delayed
verification

Edge servers cache documents. A cached
document has an associated expiration
time after which the origin server is
contacted for revalidation.

10 of 47

11 of 47

Distinguished Strategies: Replication

Abbr. Name Description
SI Server

invalidation
Edge servers cache documents, but the
origin server invalidates cached copies
when the document is updated.

SUx Server updates The origin server maintains copies at the x
most relevant edge servers; x = 10, 25 or
50

SU50
+ CLV

Hybrid SU50 &
CLV

The origin server maintains copies at the
50 most relevant edge servers; the other
intermediate servers follow the CLV
strategy.

SU50
+ CDV

Hybrid SU50 &
CDV

The origin server maintains copies at the
50 most relevant edge servers; the other
edge servers follow the CDV strategy.

11 of 47

12 of 47

Trace Results: One Global Strategy

Turnaround time and bandwidth in relative measures; stale documents as fraction of total requested documents.

Site 1 Site 2
Strategy Turnaround Stale docs Bandwidth Turnaround Stale docs Bandwidth
NR 203 0 118 183 0 115

CV 227 0 113 190 0 100
CLV 182 0.0061 113 142 0.0060 100
CDV 182 0.0059 113 142 0.0057 100
SI 182 0 113 141 0 100
SU10 128 0 100 160 0 114

SU25 114 0 123 132 0 119

SU50 102 0 165 114 0 132

SU50+CLV 100 0.0011 165 100 0.0019 125

SU50+CDV 100 0.0011 165 100 0.0017 125

Conclusion: No single global strategy is best

12 of 47

13 of 47

Per-Document Assignment (1/3)

Approach: Assume we have k performance metrics m1, . . . ,mk.

• Let D be a set of documents, S a set of strategies
• Let w be a weight vector (i.e., ∑wi = 1,wi ≥ 0).
• Let res(mi,d,s) be the value in metric mi for document d

under strategy s

Arrangement: A set of (document, strategy)–pairs:
A = {(d,sA(d))|d ∈ D,sA(d) ∈ S}. Each arrangement has an
associated cost:

costw(A) =
k

∑
i=1

wi ·(∑
d∈D

res(mi,d,sA(d)))

13 of 47

14 of 47

Per-Document Assignment (2/3)

Note: With a global strategy, sA(d) is the same for every
document d.

Goal: If A is an arrangement, we are looking for an assignment
of strategy sA(d) for each document d ∈ D, such that we minimize
costw(A).

Brute-force approach: Simply try each strategy for every
document and find out which combination works best. This
approach essentially requires |S||D| evaluations.

14 of 47

15 of 47

Per-Document Assignment (3/3)

Assignment rule: We reach our goal if we assign the strategy s
that minimizes expression E1 instead of E2:

∑
d∈D

k

∑
i=1

wi · res(mi,d,s)︸ ︷︷ ︸
E1

=
k

∑
i=1

wi ∑
d∈D

res(mi,d,s)︸ ︷︷ ︸
E2

For the family of costs under all possible weight vectors, we get
cost function arrangements.

Note: This is good news, because we need to evaluate only at
most |D| · |S| strategies, instead of the |S||D| required by a
brute-force approach ⇒ we can even conduct evaluations at
runtime!

15 of 47

16 of 47

Results: Site 1

Ideal
arrangement

SU50+CLV

SU50+CDV SU50

SU25

CLV

SI

CDV

Cost function
arrangementsT

o
ta

l
c
o
n
s
u
m

e
d
 b

a
n
d
w

id
th

Total turnaround time

16 of 47

17 of 47

Results: Site 2

Ideal arrangement

SU50+CLV

SU50+CDV

SU50

SU25
SU10

CDV

CLV

SI

Cost function arrangements

T
o
ta

l
c
o
n
s
u
m

e
d
 b

a
n
d
w

id
th

Total turnaround time

17 of 47

18 of 47

Useful Strategies
Fraction of documents to which a strategy is assigned.

Strategy Site 1 Site 2
NR 0.0973 0.0597
CV 0.0001 0.0000
CLV 0.0131 0.0029
CDV 0.0000 0.0000
SI 0.0089 0.0061
SU10 0.1321 0.6087
SU25 0.1615 0.1433
SU50 0.4620 0.1490
SU50+CLV 0.1232 0.0301
SU50+CDV 0.0017 0.0002

Conclusion: It makes sense to differentiate strategies

18 of 47

19 of 47

Replication for performance: requirements

• Runtime measurements in order to evaluate access patterns

• Runtime analysis to find best strategy

• Facilities to dynamically adjust:

– location of replicated content
– decide on number of replicas
– change consistency enforcement
– decide on data granularity
– ...

We need to realize feedback control loops

19 of 47

20 of 47

Replication for CDNs

Web hosting system

Metric

estimation

Analysis

+/-+/-+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing

20 of 47

21 of 47

Metric determination

Web hosting system

Adaptation
triggering

+/-+/-+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing

Metric

estimation

• Metric identification (what determines the cost of performance)

– end-to-end latency (in time or hops)
– total consumed bandwidth
– consistency (value,staleness)

21 of 47

22 of 47

Metric determination

Web hosting system

Adaptation
triggering

+/-+/-+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing

Metric

estimation

• Client clustering (needed for scalable measuring)
– by proxy (e.g., DNS name servers)
– by administrative grouping (autonomous systems)
– network-aware clustering (essence: group by network address)

• Metric estimation (what can be measured?)

22 of 47

23 of 47

Metric estimation: latencies

Problem: In order to decide to which replica server requests
should be redirected, we need to know how close a client is to a
server:

• Pinging the client is not an option: we must assume that clients
do not participate.

• Clients should not be modified for latency measurements.

Solution: Try to place each node (or cluster of nodes) in an
N-dimensional space, such that d(P,Q) is a reasonable
estimation of the latency between nodes P and Q, respectively.

23 of 47

24 of 47

Computing position

Observation: a node P needs
d +1 landmarks to compute its
own position in a d-dimensional
space. P

(x ,y)3 3

(x ,y)2 2

(x ,y)1 1

3d

2d

1d

Solution: P needs to solve three equations in two unknowns
(xP,yP):

di =
√

(xi− xP)2 +(yi− yP)2

24 of 47

25 of 47

Computing position

Some problems:

• measured latencies to landmarks fluctuate

• computed distances will not even be consistent

P
1 2 3 4

Q R

3.2

1.0 2.0

25 of 47

26 of 47

Computing position
Solution: Let L landmarks measure their pairwise latencies
d(bi,b j), and let a coordinator compute positions by minimizing

L

∑
i=1

L

∑
j=i+1

[d(bi,b j)− d̂(bi,b j)
d(bi,b j)

]2

with d̂(bi,b j) being distance to landmark bi given a computed
coordinate for b j.

Then: let each node P minimize

ε =
L

∑
i=1

[d(bi,P)− d̂(bi,P)
d(bi,P)

]2

26 of 47

27 of 47

Dimensions

Issue: How many dimensions do we need to consider? Accept
errors ε < E:

2D

4D

6D,8D

Relative Error

C
D

F

0.6

0.8

1.0

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0

0

20

40

60

80

100

2 4 6 8 10 12

E
st

im
at

io
ns

 w
ith

 e
rr

or
le

ss
 th

an
 E

Space Dimension

E = 1.0
E = 0.5

E = 0.25

M = 6 dimensions turns out to be enough

27 of 47

28 of 47

Adaptation triggering

Web hosting system

+/-+/-+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing

Metric

estimation

Adaptation
triggering

• Requires a reference (to determine how far we’re drifting off)

– Use cost-driven approach and minimize costs

• Essential: how to perform analysis

• When to activate triggers

• Which triggers to activate

28 of 47

29 of 47

Adaptation triggering: analysis
Essence: If no analytical models are available, use trace-driven
simulations to different scenarios. Example: Globule:

• Each simulation run (i.e., strategy evaluation) for a single Web page took
140 ms

• Keeping track of strategy transitions (and thus reducing strategies for
evaluation) allows for more than 10-fold improvement

Conclusion: Runtime what-if analysis is doable, assuming the
number of strategies to evaluate is limited. Note: Measurements
show that even “boring” sites require continuous strategy
adaptations.

29 of 47

30 of 47

Determining trace length

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

of
 w

ro
ng

 p
re

di
ct

io
ns

Number of requests in trace file

Site 2

Site 1

Conclusion: Length of 500 requests is close to optimal. Is it?

30 of 47

31 of 47

Adaptation measurements

Web hosting system

Adaptation
triggering

+/-+/-+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Metric

estimation

Replica

placement

Consistency

enforcement

Request

routing

• Replica placement: server/content placement

• Consistency enforcement: models/policies/content distribution

• Request routing: HTTP-based versus IP-based

31 of 47

32 of 47

Latency-driven replica placement

Essence: Identify the region from which most requests come,
and place a replica server in that region:

• Divide an M-dimensional space into cells with edge length C.

• Simply count the number of nodes (for requests) that come from which cell.

• Problem: Clusters of nodes may span cell boundaries.

• Solution: Use zones: cell plus its 3M neighboring cells and count densities.
We may now have overlapping zones.

Issue: determining the best cell size.

32 of 47

33 of 47

Determining cell size

Experiments with real data, combined with regression analysis
leads to:

C =
1
8
· D

3
√

K

with

D: Estimated average distance between nodes (requires
only relatively few samples to be accurate)

K: Number of required replicas

33 of 47

34 of 47

Complexity analysis

• Estimating D: O(1)

• Construction of zones: O(N log(N)) (N = number of nodes)
– Assign nodes to cells: O(N)
– Compute zones from nonempty cells: bounded by O(N)
– Access (3M neighboring) cells by binary search: bounded by O(log(N))

• Allocate K replicas by finding most dense zones: bounded by
O(K ·N)

Note: Known alternatives require O(K ·N2) or comparable (i.e.,
have an O(N2) component). Computing placements with zones is
consistently in the order of a few seconds compared to hours for
the alternatives. Important: another runtime solution!

34 of 47

35 of 47

Web applications

Issue: So far, we’ve been considering only static content. Real
Web sites use a different architecture:

Web server Database serverApplication server

Business

logic

1. Get request

3. Start process to fetch document

5. HTML document

created

HTTP

request

handler6. Return result

4. Database interaction

Problem: How can we replicate content that is generated on
request?

35 of 47

36 of 47

Edge-server systems

Authoritative

database
Schema Schema

full/partial data replication

full schema replication/

query templates

Content-aware

Database

copy

Web
server

Web
server

query

response

Content-blind

cache

cache

Client

Edge-server side Origin-server side

Appl
logic

Appl
logic

36 of 47

37 of 47

Standard processing

Appl
logic

Appl
logic

Authoritative

database
Schema Schema

Web
server

Web
server

query

response

full/partial data replication

full schema replication/

query templates

Content-aware

cache

Database

copy

Edge-server side Origin-server side

Content-blind

cache

Client

37 of 47

38 of 47

Application server only

Schema

full/partial data replication

full schema replication/

query templates

Content-blind

cache

Content-aware

cache

Database

copy

Authoritative

database
Schema

Web
server

Web
server

query

response

Client

Edge-server side Origin-server side

Appl
logic

Appl
logic

38 of 47

39 of 47

Application server only

• Local application server analyzes request

• Local application server prepares specific database query

• Direct communication with authoritative database

• Variation: (near) read-only data has been migrated to edge
server, assuming updates are processed offline.

Result: offloading computations from origin server to edge
servers.

39 of 47

40 of 47

Full/Partial DB replication

Appl
logic

Schema

Web
server

response

full/partial data replication

full schema replication/

query templates

Content-blind

cache

Content-aware

cache

Database

copy

Client

Edge-server side

Authoritative

database
Schema

Web
server

query

Origin-server side

Appl
logic

40 of 47

41 of 47

Content-aware caching

Appl
logic

Schema

Web
server

response

full/partial data replication

full schema replication/

query templates

Content-blind

cache

Content-aware

cache

Database

copy

Client

Edge-server side

Authoritative

database
Schema

Web
server

query

Origin-server side

Appl
logic

41 of 47

42 of 47

Content-aware caching

• Queries are associated with templates

• Store templates at edge servers (i.e., form local data model)

• Store query results locally, perform query-containment check

• Example:

– Query Q1: Select books from author A with publication date ≤ D1
– Q1 is sent to authoritative database; result is stored locally
– Query Q2: Select books from author A with publication date ≤ D2 ≤ D1
– Containment check reveals that Q2 can be processed locally

42 of 47

43 of 47

Content-blind caching

Appl
logic

Schema

Web
server

response

full/partial data replication

full schema replication/

query templates

Content-blind

cache

Content-aware

cache

Database

copy

Client

Edge-server side

Authoritative

database
Schema

Web
server

query

Origin-server side

Appl
logic

43 of 47

44 of 47

Content-blind caching

• Associate with each query Q a unique ID: hash(Q)

• Send Q to origin server; store (hash(Q), result(Q))-pair

• Next query Q′, compute hash(Q′) and do cache lookup

Big question: Is differentiating these strategies effective?

44 of 47

45 of 47

Workload comparisons

Measurements: Average client latency versus number of active
clients:

Edge Computing

Content-aware

Full Replication

Content-blind

Edge Computing

Content-blind

Content-aware

Full Replication

Edge Computing

Content-blind

Content-aware

Full Replication

Flashcrowd Web browsing Web ordering

45 of 47

46 of 47

Conclusions

• Replicating Internet-based services for performance requires
differentiating replication strategies

• It is difficult to predict which strategy will be best ⇒ build
feedback control loops

– Monitor and measure systems behavior
– Be able to analyze against ideal performance
– Have appropriate adjustment measures

• Note: we need continuous feedback control

46 of 47

47 of 47

Reading material

[1] G. Pierre, M. van Steen, and A. Tanenbaum. “Dynamically Selecting Optimal Distribution
Strategies for Web Documents.” IEEE Trans. Comp., 51(6):637–651, June 2002.

[2] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. “Analysis of Caching and
Replication Strategies for Web Applications.” IEEE Internet Comput., 11(1):60–66, Jan.
2007.

[3] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. “Replication for Web
Hosting Systems.” ACM Comput. Surv., 36(3):1–44, Sept. 2004.

47 of 47

