Introduction

Observation: We continue to face hard scalability problems in distributed systems:

- Systems continue to grow in size:
 - There are many participating nodes
 - Membership changes: there is no equilibrium

- Systems continue to expand geographically:
 - Nodes lie farther apart, leading to an increase in latency
 - Diameter (expressed in time) increases
 - Nodes fall under different administrative domains

Needed: General-purpose, decentralized solutions

Gossiping as a partial solution

Principle: spread (meta-)information to allow for local-only decision making:

- Nodes exchange data with neighbors:
 - data is efficiently disseminated
 - set of neighbors need not be fixed

- Nodes rely only on incomplete information

- Exchanged data can be anything: from actual data to references to nodes to programs

- There is no centralized control or management
Gossip-based applications

- Raw information dissemination
- Data aggregation
- Topology construction for overlay networks
- Semantic clustering of nodes
- Realizing storage facilities in ad hoc networks

Note: Gossiping is not a universal solution

Some observations

- There’s a lot of emergent behavior (i.e., behavior we don’t understand).
- Theory is (partially) lacking: models are often difficult to validate.
- There are many practical issues still to solve:
 - Adaptiveness (too many design-time parameters)
 - Security (attacking a gossip-based system is easy)
 - Competitive alternative single-point solutions

Lectures: overview

- **Lecture 1: Foundations**
 - Basics
 - Peer selection
 - Theory versus practice

- **Lecture 2: Applications**
 - Data aggregation
 - Structure management:
 - topology management
 - file searching
 - Storage in wireless networks
Gossiping: principle operation

Anti-entropy: Each replica regularly chooses another replica at random, and exchanges state differences, leading to identical states at both afterwards.

Gossiping: A replica which has just been updated (i.e., has been contaminated), tells a number of other replicas about its update (contaminating them as well).

System Model

- Consider \(N \) nodes, each storing a number of objects
- Each object \(O \) has a primary node at which updates for \(O \) are always initiated.
- An update of object \(O \) at node \(S \) is always timestamped; the value of \(O \) at \(S \) is denoted \(\text{val}(O, S) \)
- \(T(O, S) \) is the timestamp of the value of object \(O \) at node \(S \)

Anti-Entropy

Basic issue: When a node \(S \) contacts another node \(S' \) to exchange state information, three different strategies can be followed:

- **Push:** \(T(O, S') < T(O, S) \Rightarrow \text{val}(O, S') \leftarrow \text{val}(O, S) \)
- **Pull:** \(T(O, S') > T(O, S) \Rightarrow \text{val}(O, S) \leftarrow \text{val}(O, S') \)
- **Push-Pull:** \(S \) and \(S' \) exchange their updates

Observation: if each node periodically randomly chooses another node for exchanging updates, an update is propagated in \(O(\log(N)) \) cycles.
Anti-Entropy: Analysis

Consider a single source, propagating its update. Let p_i be the probability that a node has not received the update after the i-th cycle.

- With pull, $p_{i+1} = (p_i)^2$: the node was not updated during the i-th cycle and should contact another ignorant node during the next cycle.
- With push, $p_{i+1} = p_i (1 - \frac{1}{N})^{N(1-p_i)} \approx p_i e^{-1}$ (for small p_i and large N): the node was ignorant during the i-th cycle and no updated node chooses to contact it during the next cycle.

Anti-entropy: some figures

Pure gossiping: basic model

1. A node P with an update (P is infected) contacts other node Q.
2. If Q already knows the update (Q is not susceptible), P stops with probability $1/k$ (P is effectively removed).
3. Otherwise, P contacts another (randomly selected) node.
Gossiping: basic math

Notation: s is fraction of nodes not yet updated, i is fraction of active (updated) nodes, r is fraction of passive (updated) nodes: $s + i + r = 1$. From epidemics:

1. \[\frac{ds}{dt} = -si \]
2. \[\frac{di}{dt} = si - \frac{1}{k}(1 - s)i \]
3. \[\frac{di}{ds} = \frac{k + 1}{k} + \frac{1}{k} \]
4. \[i(s) = \frac{k + 1}{k} s + \frac{1}{k} \ln s + C \]

Gossiping: basic math

With $i(1) = 0$, we obtain $C = \frac{k + 1}{k}$, and thus

\[i(s) = \frac{k + 1}{k} (1 - s) + \frac{1}{k} \ln s \]

left to right

$k = 10, 9, \ldots, 1$

Gossiping: the unaffected

$i(s) = 0$ implies no more activity $\Rightarrow s = e^{-(k+1)(1-s)}$

Observation: all nodes need to be updated \Rightarrow pure gossiping is not enough.

Consider 10,000 nodes

\begin{tabular}{ccc}
\hline
k & s & N_k \\
\hline
1 & 0.203188 & 2032 \\
2 & 0.059520 & 595 \\
3 & 0.019827 & 198 \\
4 & 0.006977 & 70 \\
5 & 0.002516 & 25 \\
6 & 0.000918 & 9 \\
7 & 0.000336 & 3 \\
\hline
\end{tabular}
Getting a random peer

Important: Gossip-based systems rely on the following important assumption:

A node P can select another peer Q drawn uniform at random from the current set of nodes.

Observation: This seems to imply that every node as an accurate view on the complete membership!

Getting a random peer

Question: What does it take to build a decent peer-sampling service?

- Nodes are provided a peer drawn uniform at random from the complete set of nodes
- Sampling is accurate, reflecting current set of nodes
- Draws by different nodes are independent
- The service should be scalable

Key issue: The service can be built entirely with epidemic-based techniques.

Framework - overview

<table>
<thead>
<tr>
<th>Active thread</th>
<th>Passive thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>selectPeer(Q);</td>
<td>receiveFromAny(P, buf);</td>
</tr>
<tr>
<td>selectToSend($bufs$);</td>
<td>selectToSend($bufs$);</td>
</tr>
<tr>
<td>sendTo(Q, bufs);</td>
<td>sendTo(P, bufs);</td>
</tr>
<tr>
<td>receiveFrom(Q, buf);</td>
<td>selectToKeep(p_view, buf);</td>
</tr>
<tr>
<td>selectToKeep(p_view, buf);</td>
<td>selectToKeep(p_view, buf);</td>
</tr>
</tbody>
</table>

selectPeer	Randomly select a neighbor
selectToSend	Select some entries from local list
selectToKeep	Add received entries to local list. Remove repeated items.

Simple? Not quite when getting into some details...
Framework - for real

- N nodes, each having an address
- Every node has a partial view: a local list of c node descriptors
- Node descriptor = ($address$, age) pair

Operations on partial view:

- `selectPeer()` return an item
- `permute()` randomly shuffle items
- `increaseAge()`forall items add 1 to age
- `append(...)` append a number of items
- `removeDuplicates()` remove duplicates (on same address), keep youngest
- `removeOldItems(n)` remove n descriptors with highest age
- `removeHead(n)` remove n first descriptors
- `removeRandom(n)` remove n random descriptors

Active thread (one per node)

```java
do forever
    wait(T time units) // $T$ is called the cycle length
    $p$ ← `view.selectPeer()` // Sample a live peer from the current view
    if push then // Take initiative in exchanging partial views
        buffer ← (⟨$MyAddress$, 0⟩) // Construct a temporary list
        `view.permute()` // Shuffle the items in the view
        move oldest $H$ items to end of view // Necessary to get rid of dead links
        buffer.append(view.head($c/2$)) // Copy first half of all items to temp. list
        send buffer to $p$
    else // empty view to trigger response
        send (null) to $p$
    if pull then // Pick up the response from your peer
        receive buffer, from $p$
        `buffer.select(c,H,S,buffers)` // Core of framework – to be explained
        `view.increaseAge()`
```

Passive thread (one per node)

```java
do forever
    receive buffer, from $p$ // Wait for any initiated exchange
    if pull then // Executed if you're supposed to react to initiatives
        buffer ← (⟨$MyAddress$, 0⟩) // Construct a temporary list
        `view.permute()` // Shuffle the items in the view
        move oldest $H$ items to end of view // Necessary to get rid of dead links
        buffer.append(view.head($c/2$)) // Copy first half of all items to temp. list
        send buffer to $p$
        `view.select(c,H,S,buffers)` // Core of framework – to be explained
        `view.increaseAge()`
```
View selection

Parameters:

- **c**: length of partial view
- **H**: number of items moved to end of list (healing)
- **S**: number of items that are swapped with a peer
- **buffer**: received list from peer

```java
method view.select(c, H, S, buffer)
view.append(buffer) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldItems(min(H, view.size - c)) // Drop oldest, but keep c items
view.removeHead(min(S, view.size - c)) // Drop the ones you sent to peer
view.removeAtRandom(view.size - c) // Keep c items (if still necessary)
```

Design space – peer selection

`selectPeer()` returns a live peer from the current view. Essentially, there are three possibilities:

- **head**: pick the address of the youngest descriptor (i.e., with low age) – bad choice, since this is the neighbor the node most recently communicated with ⇒ offers little opportunities for selecting unknown nodes (confirmed by experiments)
- **rand**: pick the address of a randomly selected descriptor
- **tail**: pick the address of the oldest descriptor (i.e., with high age)

Design space – view propagation

- **push**: Node sends descriptors to selected peer
- **pull**: Node only pulls in descriptors from selected peer
- **pushpull**: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no opportunity to insert information on itself. Loss of all incoming connections will throw a node out of the network (may actually happen).
Design space – view selection

Note: Critical parameters are H and S in method `select(c, H, S, buffer)`. Assume c is even.

- $[H > c/2] \equiv [H = c/2]$, as minimum view size is always c
- Likewise, $[S > c/2 - H] \equiv [S = c/2 - H]$
- Do random removal (last step) only if $S < c/2 - H$
- **Conclusion:** consider only $0 \leq H \leq c/2$ and $0 \leq S \leq c/2 - H$

blind: remove($H = 0, S = 0$) — select blindly a random subset

healer: remove($H = c/2, S = 0$) — select freshest items

swapper: remove($H = 0, S = c/2$) — min. loss of descriptors

Local evaluations (1/2)

Method: Organize a network of $N = 2^n + 1$ nodes and let node N sample the network, each time providing an n-bit sample.

- With $n = 10$, node N generates 4 samples per cycle, and constructs a 32-bit integer.
- The 32-bit integers together form a stream of numbers, which should be random if peer sampling is random.
- Series is tested by the "diehard battery of randomness tests." (see www.stat.fsu.edu/pub/diehard)
- Examined blind, healer, swapper, fixing to tail and pushpull

Local evaluations (2/2)

Results: All tests could be passed (!)

One exception: construction of binary matrices produced too many matrices with a high rank. This failure is caused by our tendency to maximize diversity.

"Fix": by considering only every 8th sample in the generated series, all tests are passed.

Conclusion: it is difficult to observe nonrandom local behavior. The functional properties of peer sampling are barely affected by the choice of implementation.

Applications will often not see the difference
Global randomness

Issue: Deciding on global randomness is a bit tricky ⇒ focus on structural properties by comparing to random graph (= partial view consists of \(c \) uniform randomly chosen peers).

Indegree distribution: has a serious effect on load balancing: hot spots, bottlenecks, but also on the spreading of information.

Fault tolerance: to what extent can the service withstand catastrophic failures and high churn?

Note: concentrate on \(N = 10,000 \) and \(c = 30 \). Results are based on simulations and emulations.

Convergence behavior

Consider three starting situations:

Growing: Start with one node \(X \). Before starting a next cycle, add 500 nodes. Each new node knows only about \(X \).

Lattice: Organize all nodes in a ring. Add descriptors of nearest nodes in the ring.

Random: Every view is filled with a uniform random sample of all nodes.

Observation: Pure pushing converges poorly and often leads to partitioned overlays in growing scenario.

Maximal indegree growing scenario

![Graph showing maximal indegree for push and pushpull protocols over cycles.](image)

Note: From now on consider only pushpull protocols
Fluctuation of degree distribution (1/2)

Observation: It turns out that the in-degree for each node changes over time. The question is how quickly.

Let \(d_1, \ldots, d_k \) denote in-degree for a fixed node for \(K \) consecutive cycles, and \(\bar{d} \) the average in-degree. Let

\[
r_k = \frac{\sum_{j=1}^{K-k} (d_j - \bar{d})(d_{j+k} - \bar{d})}{\sum_{j=1}^{K}(d_j - \bar{d})^2}
\]

be the correlation between pairs of in-degree separated by \(k \) cycles.

Fluctuation of degree distribution (2/2)
Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the direction.

Clustering coefficient indicates to what extent the neighbors of a node X are each other’s neighbors. Let Γ_X denote the graph induced by the neighbors of node X.

$$\gamma(X) = \frac{|E(\Gamma_X)|}{|V(\Gamma_X)|^2}$$

For a graph: take the average over all nodes.

Clustering coefficient (2/2)

![Graph showing clustering coefficient](image)

Catastrophic failure

![Graph showing catastrophic failure](image)

Scenario: After 300 cycles, remove large fraction of nodes.
Scenario: After 300 cycles, remove 50% of nodes.

Handling churn: Gnutella traces
Conclusions

- Push-pull gossip protocols perform better than only push or pull.
- Discarding old references is good for fault tolerance (but may also be “too” good).
- Swapping references is good for maintaining well-balanced graphs (in-degree ≈ out-degree).
- Differences between protocols mainly affect the nonfunctional properties of applications.

Reading material