
�

All-Pairs shortest paths via
fast matrix multiplication

Uri Zwick
Tel Aviv University

Otwarte wykłady dla doktorantów informatyki
Instytut Informatyki

Uniwersytetu Warszawskiego

Marzec 9-10, 2007

1. Algebraic matrix multiplication
a. Strassen’s algorithm
b. Rectangular matrix multiplication

2. Boolean matrix multiplication
a. Simple reduction to integer matrix multiplication
b. Computing the transitive closure of a graph.

3. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products
c. Fredman’s trick

Outline

4. APSP in undirected graphs
a. An O(n2.38) algorithm for unweighted graphs

(Seidel)
b. An O(Mn2.38) algorithm for weighted graphs

(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query

answering algorithm (Yuster-Zwick)
3. An O(n2.38logM) (1+�)-approximation algorithm

6. Summary and open problems

�����������	
��������

�
 � ���
 ���� ��
� ��� � ��
 ����

Algebraic Matrix Multiplication

���� �()i jA a���� ()i jB b���� ()i jC c����
i

j

Can be computed naively in O(n3) time.

Matrix multiplication algorithms

Coppersmith, Winograd (1990)n2.38

Strassen� (1969)n2.81

—n3

AuthorsComplexity

Conjecture/Open problem: n2+o(1) ???

�

Multiplying 2�2 matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)

��� � ������ � ������

��� � ������ � ������

��� � ������ � ������

��� � ������ � ������

Strassen’ s 2�2 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

� �

� �

� �

� �

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()

()

()

()

()

()()

()()

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B

�

�

� � �

� �

�

�

� �

�

� �

� �

�

11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

� � �

�

�

�

��

�

� �

� 7 multiplications
18 additions/subtractions

Subtraction!

Strassen’ s n�n algorithm

View each n�n matrix as a 2�2 matrix
whose elements are n/2 � n/2 matrices.

Apply the 2�2 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)

Works over any ring!

Matrix multiplication algorithms

The O(n2.81) bound of Strassen was
improved by Pan, Bini-Capovani-Lotti-

Romani, Schönhage and finally by
Coppersmith and Winograd to O(n2.38).

The algorithms are much more complicated…

We let 2 � � < 2.38 be the
exponent of matrix multiplication.

Many believe that �=2+o(1).

Rectangular Matrix multiplication

[Coppersmith ’ 97]: n1.85p0.54+n2+o(1)

For p � n0.29, complexity = n2+o(1) !!!

���� �n

p

p

n

n

n

Naïve complexity: n2p

���������������

�� ���� �� ������

 � 	

����� �! �� ��� � ��

�

Boolean Matrix Multiplication

���� �()i jA a���� ()i jB b���� ()i jC c����
i

j

Can be computed naively in O(n3) time.

Algebraic
Product

O(n2.38)
algebraic

operations

Boolean
Product

or (�)
has no inverse!

?But, we can work
over the integers
(modulo n+1)!

O(n2.38)
operations on

O(log n) bit words

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)�E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n�) time.

Adjacency matrix
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph,
then (Ak)ij=1 iff there is a path of length k from i to j.

Transitive Closure
using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)�E* iff there is a path from u to v.

If A is the adjacency matrix of G,
then (A�I)n�1 is the adjacency matrix of G*.

The matrix (A�I)n�1 can be computed by log n
squaring operations in O(n�log n) time.

It can also be computed in O(n�) time.

D*�GBD*D*CE

EBD*(A�BD*C)*

DC

BA

HG

FE

X =

X* = =

TC(n) � 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B

�

Exercise 1: Give O(n�) algorithms for
findning, in a directed graph,
a) a triangle
b) a simple quadrangle
c) a simple cycle of length k.

Hints:
1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.

���"� � � � ��� � � �� �

�� � � �� � � � � �� ��

An interesting special case
of the APSP problem

A B

17

23

Min-Plus product

2

5
10

20

30

20

Min-Plus Products

�
�
�

	

�
�
�

�

�

��

���

�
�
�
�

	

�
�
�

�

�

����

�

�
�
�
�

	

�
�
�

�

���

�

���

125

703
48

528

5
731

571

252
1036

Solving APSP by repeated squaring

D � W
for i �1 to �log2n�
do D � D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n) � MPP(n) log n
Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized
by paths that use at most k edges.

D*�GBD*D*CE

EBD*(A�BD*C)*

DC

BA

HG

FE

X =

X* = =

APSP(n) � 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B

�

Algebraic
Product

ij ik kj
k

C A B

c a b

� �

� �

O(n2.38)

Min-Plus
Product

min operation
has no inverse!?

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

� � � � � �� �� � � � � �
� � � � � �
� 	 � 	 � 	� � �

min{ }ij ik kjk
c a b� �

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c
x x x x
x x x x

 � � � �
� � � � � �� �� � � � � �� �

� � � �� 	
� 	 � 	

� � �

Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c
x x x x
x x x x

 � � � �
� � � � � �� �� � � � � �� �

� � � �� 	
� 	 � 	

� � �

n�
polynomial

products

M
operations per

polynomial
product

���� �

Mn�
operations per

max-plus
product

Assume: 0 � aij , bij� M

�#����������#�

APSP – All-Pairs Shortest Paths

SSSP – Single-Source Shortest Paths

The min-plus product of two n � n
matrices can be deduced after only
O(n2.5) additions and comparisons.

Fredman’ s trick
Breaking a square product into

several rectangular products

A2A1

B1

B2

* min *i ii
A B A B�

MPP(n) � (n/m) (MPP(n,m,n) + n2)

m

n

�

Fredman’ s trick

A Bn

m
n

m

Naïve calculation requires n2m operations

air+brj � ais+bsj

air - ais � bsj - brj

�

Fredman observed that the result can be inferred
after performing only O(nm2) operations

Fredman’ s trick (cont.)

air+brj � ais+bsj air - ais � bsj - brj�

• Generate all the differences air - ais and bsj - brj .

• Sort them using O(nm2) comparisons. (Non-trivial!)

• Merge the two sorted lists using O(nm2) comparisons.

The ordering of the elements in the sorted list
determines the result of the min-plus product

!!!

Decision Tree Complexity

a17-a19 � b92-b72

c11=a17+b71
c12=a14+b42

...

c11=a13+b31
c12=a15+b52

...

yes no

…

2.5n

…
c11=a18+b81
c12=a16+b62

...

c11=a12+b21
c12=a13+b32

...

All-Pairs Shortest Paths
in directed graphs with “real” edge weights

[Chan ’ 07]n3 (log log n)3 / (log n)2

[Han ’ 06]n3 (log log n / log n)5/4

[Chan ’ 05]n3 / log n

[Takaoka ’ 04]n3 log log n / log n

[Zwick ’ 04]n3 (log log n)1/2 / log n

[Han ’ 04]n3 (log log n / log n)5/7

[Dobosiewicz ’ 90]n3 / (log n)1/2

[Takaoka ’ 92]n3 (log log n / log n)1/2

[Fredman ’ 76]n3 (log log n / log n)1/3

[Floyd ’ 62] [Warshall ’ 62]n3

AuthorsRunning time

��$��%#��&

��&�� � ��&

� #� � ��� ��� � �#�

4. APSP in undirected graphs
a. An O(n2.38) algorithm for unweighted

graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs

(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query

answering algorithm (Yuster-Zwick)
3. An O(n2.38logM) (1+�)-approximation algorithm

6. Summary and open problems

�

Directed versus undirected graphs

x
y

z

�(x,z) � �(x,y) + �(y,z)

x
y

z

�(x,z) � �(x,y) + �(y,z)

�(x,z) � �(x,y) – �(y,z)

�(x,y) � �(x,z) + �(z,y)Triangle inequality

Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where
(u,v)�E2 if and only if (u,v)�E or there

exists w�V such that (u,w),(w,v)�E

Let � (u,v) be the distance from u to v in G.
Let �2(u,v) be the distance from u to v in G2.

�(u,v)=5 �2(u,v)=3

Distances in G and its square G2 (cont.)

Lemma: �2(u,v)=���(u,v)/2� , for every u,v�V.

Thus: �(u,v) = 2�2(u,v) or
�(u,v) = 2�2(u,v)��1

�2(u,v) ����(u,v)/2�

�(u,v) ��2�2(u,v)

Distances in G and its square G2 (cont.)

Lemma: If �(u,v)=2�2(u,v) then for every
neighbor w of v we have �2(u,w) � �2(u,v).

Lemma: If �(u,v)=2�2(u,v)–1 then for every
neighbor w of v we have �2(u,w) � �2(u,v) and

for at least one neighbor �2(u,w) < �2(u,v).

, , , , ,
(,)

() : deg()u w u w w v u v u v
wv w E

c c a CA v c
�

� �� �

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Even distances
Lemma: If �(u,v)=2�2(u,v) then for every
neighbor w of v we have �2(u,w) � �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Odd distances
Lemma: If �(u,v)=2�2(u,v)–1 then for every

neighbor w of v we have �2(u,w) � �2(u,v) and
for at least one neighbor �2(u,w) < �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 2: Prove the lemma.

�

Even distances
Lemma: If �(u,v)=2�2(u,v) then for every
neighbor w of v we have �2(u,w) � �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Seidel’ s algorithm

Algorithm APD(A)
if A=J then

return J–I
else

C�APD(A2)
X�CA , deg�Ae–1
dij�2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix,
then all distances are 1.

2. Compute A2, the adjacency
matrix of the squared graph.

3. Find, recursively, the distances
in the squared graph.

4. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Complexity:
O(n�log n)

Assume that A has
1’ s on the diagonal.

Boolean matrix
multiplicaion

Integer matrix
multiplicaion

Exercise 3: (*) Obtain a version of
Seidel’ s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(n�log n) time.

Exercise 4:
a) Obtain a deterministic O(n�)-time

algorithm for finding unique witnesses.
b) Let 1�d�n be an integer. Obtain a

randomized O(n�)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

c) Obtain an O(n�log n)-time algorithm for
finding all witnesses.

Hint: In b) use sampling.

	

[Shoshan-Zwick ’ 99]Mn�
AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,…M}

Improves results of
[Alon-Galil-Margalit ’ 91] [Seidel ’ 95]

&��� ��&

� # � ���� ��� � �# �

Exercise 5:
Obtain an O(n�log n) time algorithm for

computing the diameter of an unweighted
directed graph.

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

� � � � � �� �� � � � � �
� � � � � �
� 	 � 	 � 	� � �

min{ }ij ik kjk
c a b� �

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c
x x x x
x x x x

 � � � �
� � � � � �� �� � � � � �� �

� � � �� 	
� 	 � 	

� � �

Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c
x x x x
x x x x

 � � � �
� � � � � �� �� � � � � �� �

� � � �� 	
� 	 � 	

� � �

n�
polynomial

products

M
operations per

polynomial
product

���� �

Mn �

operations per
max-plus
product

Assume: 0 � aij , bij� M

Trying to implement the
repeated squaring algorithm

Consider an easy case:
all weights are 1.

D ���� W
for i ����1 to log2n
do D ���� D*D

After the i-th iteration, the finite
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n�

The cost of the last product is n�+1 !!!

�

Sampled Repeated Squaring (Z ’ 98)

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(V , (9n lnn)/s)
D ���� min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size (9n lnn)/s

Select the columns
of D whose

indices are in B

Select the rows
of D whose

indices are in B
With high probability,

all distances are correct!
The is also a slightly more complicated

deterministic algorithm

Sampled Distance Products (Z ’ 98)

�

�

�

���

In the i-th
iteration, the set B
is of size n ln n / s,
where s = (3/2)i+1

The matrices get
smaller and smaller

but the elements get
larger and larger

Sampled Repeated Squaring - Correctness

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(V,(9 ln n)/s)
D ���� min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th
iteration, distances that are
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln
(1)

s
nn

s
���Failure

probability :

Rectangular Matrix multiplication

[Coppersmith ’ 97]: n1.85p0.54+n2+o(1)

For p � n0.29, complexity = n2+o(1) !!!

���� �n

p

p

n

n

n

Naïve complexity: n2p

Complexity of APSP algorithm

The i-th iteration:

����n

n ln n / s

n n ln
n / s

s=(3/2)i+1

The elements are
of absolute value

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s

� � �
� 	

0.68 2.58M n�

Open problem:
Can APSP in directed graphs

be solved in O(n�) time?

Related result: [Yuster-Zwick’ 04]
A directed graphs can be processed in O(n�)

time so that any distance query can be
answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n�) time.
The corollary obtained using a different

technique by Sankowski (2004)

��

The preprocessing algorithm (YZ ’ 05)

D ���� W ; B ����V
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(B,(9n lnn)/s)
D[V,B] ���� min{D[V,B] , D[V,B]*D[B,B] }
D[B,V] ���� min{D[B,V] , D[B,B]*D[B,V] }

}

The APSP algorithm

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(V,(9nlnn)/s)

}

D ���� min{ D , D[V,B]*D[B,V] }

Twice Sampled Distance Products

�

�

�

���

�

���

���

���

���
�

The query answering algorithm

�(u,v) ���� D[{u},V]*D[V,{v}]

u

v

Query time: O(n)

The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u� Bi or v�Bi
and there is a shortest path from u to v that uses at

most (3/2)i edges, then D(u,v)=�(u,v).

Let Bi be the i-th sample. B1� B2 �B3 �…

Consider a shortest path that uses at most (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

The query answering algorithm:
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

u v

��

1. Algebraic matrix multiplication
a. Strassen’ s algorithm
b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products
c. Fredman’ s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+�)-approximation algorithm
5. Summary and open problems

Approximate min-plus products

Obvious idea: scaling

SCALE(A,M,R):
/ , if 0

, otherwise
ij ij

ij

Ra M a M
a

� �� � � �� �� ! � " #
��� �$ %

APX-MPP(A,B,M,R) :
A’�SCALE(A,M,R)
B’�SCALE(B,M,R)
return MPP(A’ ,B’)

Complexity is Rn2.38,
instead of Mn2.38, but
small values can be

greatly distorted.

Addaptive Scaling

APX-MPP(A,B,M,R) :

C’��
for r�log2R to log2M do

A’�SCALE(A,2r,R)
B’�SCALE(B,2r,R)
C’�min{C’ ,MPP(A’ ,B’)}

end

Complexity is Rn2.38 logM
Stretch at most 1+4/R

1. Algebraic matrix multiplication
a. Strassen’ s algorithm
b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products
c. Fredman’ s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)
3. An O(n2.38logM) (1+�)-approximation algorithm

5. Summary and open problems

[Shoshan-Zwick ’ 99]Mn2.38

AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,…M}

Improves results of
[Alon-Galil-Margalit ’ 91] [Seidel ’ 95]

All-Pairs Shortest Paths
in graphs with small integer weights

[Zwick ’ 98]M0.68 n2.58

AuthorsRunning time

Directed graphs.
Edge weights in {−M,…,0,…M}

Improves results of
[Alon-Galil-Margalit ’ 91] [Takaoka ’ 98]

��

Answering distance queries

n

Query
time

[Yuster-Zwick ’ 05]Mn2.38

AuthorsPreprocessing
time

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’ s SSSP algorithm.

Mn2.38 vs. mn0.5logM

[Zwick ’ 98](n2.38 log M)/�
AuthorsRunning time

Approximate All-Pairs Shortest Paths
in graphs with non-negative integer weights

Directed graphs.
Edge weights in {0,1,… M}

(1+�)-approximate distances

Open problems

• An O(n2.38) algorithm for the directed
unweighted APSP problem?

• An O(n3-�) algorithm for the APSP
problem with edge weights in {1,2,… ,n}?

• An O(n2.5-�) algorithm for the SSSP problem
with edge weights in {0,±1, ±2,… , ±n}?

