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SHORT INTRODUCTION TO
FAST MATRIX MULTIPLICATION

Algebraic Matrix Multiplication

J
ﬂ

n
cij = aikbi;
k=1

Can be computed naively in O(n%) time.

Matrix multiplication algorithms

Complexity Authors
n3 —
n2-8l Strassen (1969)
n2-38 Coppersmith, Winograd (1990)

Conjecture/Open problem: pZto) 9297




Multiplying 2x2 matrices

((Cii Ci2\ _ [ A A\ [ Bu Bz
\021 Caa / \A21 Ao } \ By;  Bao }
Ci1 = A11B11+ A12Boy

Ci2 = A11Bia+ A12Baz 8 multiplications

Co1 = A1 By + ApBo 4 additions
Cy = A1 Bio + A B

T(n) = 8 T(n/2) + O(n?)
T(n) — O(nlogS/logZ):O(n3)

Strassen’s 2x2 algorithm

G =A,B, +4,B, M, =( Subtraction!
C,=A,B,+A,By M, == By

Co = AyBy + Ay By M, =A(B,-B,)

Cp=AyB,+A,By, M,=A,(B, —B,)
M;=(A,+A,)B,

Co=M+M,-M;+M, Mg =(A,—A)(B, +B,)

Cip =M+ M, M; =(A, - Ay)(B, +By)

C,=M,+M,

Cp=M,~M,+M,+M, 7 multiplications

18 additions/subtractions

Strassen’s nxn algorithm

View each nxn matrix as a 2x2 matrix
whose elements are n/2 x n/2 matrices.

Apply the 2x2 algorithm recursively.
T(n) =7 T(n/2) + O(n?)
T(n) = O(nlog7/log2):o(n2.8|)

Works over any ring!

Matrix multiplication algorithms

The O(n*3") bound of Strassen was
improved by Pan, Bini-Capovani-Lotti-
Romani, Schonhage and finally by
Coppersmith and Winograd to O(n?3%).

The algorithms are much more complicated...

We let 2 < » < 2.38 be the
exponent of matrix multiplication.

Many believe that w=2+o(1).

Rectangular Matrix multiplication

4 n

Naive complexity: I’l2p
[Coppersmith *97]: n1-85p0-54+n2+””)

For p <n%?, complexity = n>+o() 111

BOOLEAN MATRIX
MULTIPLICATION

AND

TRANSIVE CLOSURE




Boolean Matrix Multiplication

J

mn
cij =\ air Abij
k=1

Can be computed naively in O(n%) time.

Algebraic Boolean
Product Product

C = AB C =A-B

Cij = E aikbr; ¢y = \/aik/\bkj
k k

3 PR
O(n?39) BIJGEED bk
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Transitive Closure

Let G=(V.E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)e E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n®) time.

Adjacency matrix

of a directed graph
1 4 001110
100110
010011
6 000001
000000
2 000010

Exercise 0: If A is the adjacency matrix of a graph,
then (A"),-l-:l iff there is a path of length k from i to ;.

Transitive Closure
using matrix multiplication

Let G=(V.E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)e E* iff there is a path from u to v.

If A is the adjacency matrix of G,
then (AvI)"~! is the adjacency matrix of G*.

The matrix (AvI)"~! can be computed by log n
squaring operations in O(n®log n) time.

It can also be computed in O(n®) time.

B
A | B B b
X =
c | D
c
E | F (AVBD*C)* EBD*
X = =
G | H D*CE D*vGBD*

TC(n) <2 TC(n/2) + 6 BMM(n/2) + O(n?)




Exercise 1: Give O(n®) algorithms for
findning, in a directed graph,

a) atriangle

b) asimple quadrangle

c) asimple cycle of length .

Hints:

1. Inan graph all paths are simple.
2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.

MIN-PLUS MATRIX
MULTIPLICATION

An interesting special case
of the APSP problem

© (C=A«B
@ Cij = mkin{aik'i‘bkj}

Min-Plus product

Min-Plus Products

C =AxB

Cij = mkin{aik‘i‘bkj}

-6 -3 -10 1 -3 7 8§ 4+ -4
2 5 -2| = |[+0 5 +4oo| * =3 0 -7
-1 -7 =5 8 2 =5

|

Solving APSP by repeated squaring

If Wis an n by n matrix containing the edge weights
of a graph. Then W" is the distance matrix.

By induction, W gives the distances realized
by paths that use at most k edges.

D«W

fori <1 to rlogzﬂ

do D < D*D
Thus:  APSP(n) < MPP(n) log n
Actually: APSP(n) = O(MPP(n))

B
A | B B b
X =
c | D
c
E | F (AVBD*C)* EBD*
X = =
G | H D*CE D*vGBD*

APSP(n) <2 APSP(n/2) + 6 MPP(1/2) + O(n?)




Algebraic Min-Plus
Product Product
C=A-B C =AxB

¢ = Zaikbkj
k

Cij = mkin{aik +bkj}

min opdration
has no snverse!

O(n2.38)

I/

Using matrix multiplication
to compute min-plus products

CTRCE! ay Gy by b,
€y Cpn = ay Gy * by by

cij = Inkin{aik: + by}

ay @y LY by

¢, ¢y X X X X
' ' _ azy an by by
Cu Cn = X X 11X X

A § aik+bij L (A
Cij = X J Cij = ﬁl‘bt(ci]—)
k

Using matrix multiplication
to compute min-plus products

Assume: 0<ay;, by<M

an a2 b 1 ’)12
e el x" x x' x
' ' an axn bay by
Ca Cn =X X lx X
7o M Mn®
. X  operations per =  operations per
pozr;(:;lsal polynomial max-plus
P product product

SHORTEST PATHS

APSP — All-Pairs Shortest Paths
SSSP — Single-Source Shortest Paths

Fredman’s trick

The min-plus product of two n x n
matrices can be deduced after only
O(n??) additions and comparisons.

Breaking a square product into
several rectangular products

m
—
B,
B,
n A A,

A*B=minA *B,

MPP(n) < (n/m) MPP(n,m,n) + n?)




Fredman’s trick

m
— n
/—/%
a,+b,; < a;+by
n A B m (3

Ay - Gy < bsj - brj

Naive calculation requires n%m operations

Fredman observed that the result can be inferred
after performing only O(nm?) operations

Fredman'’s trick (cont.)
a,+b, < a;+b; < a,-a;<b;-b,

» Generate all the differences @;, - a; and b; - b,;.
. them using O(nm?) comparisons. (Non-trivial!)

. the two sorted lists using O(nm?) comparisons.

9 The ordering of the elements in the sorted list

determines the result of the min-plus product
"

Decision Tree Complexity

41015 byrby,

¢ =a;+by, C =gty || ¢y=a,,+h;,
cp=a +by, Cp=a;5tbg, | | €1p=a 5+bs,

All-Pairs Shortest Paths

in directed graphs with “real” edge weights

Running time Authors
n [Floyd *62] [Warshall *62]
n’ (log log n /log n)'3 [Fredman *76]
n’ (log log n /log n)'? [Takaoka *92]
n?/ (log n)'2 [Dobosiewicz "90]
n’ (log log n /log n)>7 [Han ’04]
n’loglogn/logn [Takaoka *04]
n’ (log log n)"2 /log n [Zwick *04]
n/logn [Chan *05]
n’ (log log n /log n)¥* [Han "06]
n? (log log n)3 / (log n)? [Chan ’07]

UNWEIGHTED
UNDIRECTED
SHORTEST PATHS

4. APSP in undirected graphs
=) a. An O(n>3%) algorithm for unweighted
graphs (Seidel)
O(Mn23%)
(Shoshan-Zwick)
5. APSP in directed graphs
1. An O(M%8,2-38) algorithm (Zwick)
2. An O(Mn?38) preprocessing / O(n) query
answering algorithm (Yuster-Zwick)
3. An O(n*3®logM) (1+¢)-approximation algorithm
6. Summary and open problems




Directed versus undirected graphs

S

3(x,2) <3(x,y) +6(y,2)  8(x,2) < B(xy) + 8(y,2)
Triangle inequality 3(x,y) < 8(x,2) + 6(z,y)

8(x,2) = 8(x,y) — 8(y,2)
Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G?=(V,E?), where
(u,v) e E? if and only if (u,v)eE or there
exists weV such that (u,w),(w,v)eE

Let 6 (u,v) be the distance from u to v in G.
Let 8%(u,v) be the distance from u to v in G>.

N R N —

d(u,v)=5 3 (u,v)=3

Distances in G and its square G? (cont.)

S————

82(u,v) <[ 8(u)2

A S

S(u,v) < 28%u,v)

Lemma: 8%(u,v)=|8(uv)/2] , for every u,veV.

Thus: 8(u,v) = 26%(u,v) or
S(u,v) = 28%u,v) —1

Distances in G and its square G? (cont.)

Lemma: If 5(u,v)=28%(u,v) then for every
neighbor w of v we have 6*(u,w) > 8%(u,v).

Lemma: If 5(u,v)=28%(u,v)-1 then for every
neighbor w of v we have 8*(u,w) < 8*(u,v) and
for at least one neighbor 8(u,w) < 6*(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G>

Z Cu,w :z Cu,waw,v = (CA)u,v : deg(v) Cu,v
w

(v,w)eE

Even distances

Lemma: If 5(u,v)=28%(u,v) then for every
neighbor w of v we have 6*(u,w) > 8%(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G>

Z Cuw = Z Cuwluy = (CA),, = deg(v)cy,

(vyw)EE weV

Odd distances

Lemma: If 6(u,v)=28%(u,v)-1 then for every
neighbor w of v we have 6*(u,w) < 8*(u,v) and
for at least one neighbor 8(u,w) < 8(u,v).

Exercise 2: Prove the lemma.

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G*

Z Cuw = Z Cuwluy = (CA),, < deg(v)cy,

(vyw)EE weV




Even distances

Lemma: If 5(u,v)=28%(u,v) then for every
neighbor w of v we have 6*(u,w) > 8%(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G?

Z Cuw = Z Cuwuy = (OA)UU 2> dPg(“)("uv

(vyw)eEE weV

Seide Assume that A has
1’s on the diagonal.

. If A is an all one matrix,

. Compute A2, the adjacency

. Find, recursively, the distances

. Decide, using one integer

Boolean matrix

then all distances are 1. C e .
multiplicaion

else
C+—APD(A?)

X—CA , deg—Ae-1
egl

matrix of the squared graph.

in the squared graph.

Integer matrix

matrix multiplication, for every multiplicaion

two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Complexity:

O(n®log n)

Exercise 3: (*) Obtain a version of
Seidel’s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

C = AB

Cij = \/ ik N\ iy
k=1

A matrix Wis a matrix of witnesses iff

If Cij = 0 then Wi; = 0

If ¢;j = 1 then w;; = k where a;, = by; =1

Can be computed naively in O(n?) time.
Can also be computed in O(n®log n) time.

Exercise 4:

a) Obtain a deterministic O(n®)-time
algorithm for finding unique witnesses.

b) Let 1<d<n be an integer. Obtain a
randomized O(n®)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

¢) Obtain an O(n”log n)-time algorithm for
finding all witnesses.

Hint: In b) use




All-Pairs Shortest Paths

in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,...M}

Authors

Running time
[Shoshan-Zwick "99]

Mn®

Improves results of
[Alon-Galil-Margalit *91] [Seidel *95]

Exercise 5:
Obtain an O(n®log n) time algorithm for
computing the diameter of an unweighted
directed graph.

DIRECTED
SHORTEST PATHS

|

Using matrix multiplication
to compute min-plus products

bl 1 bl 2
* b2 1 b’_’2

{CH € }

Cij = rrgn{aik+bkj}
xull ayp x

by ko

X X

LT L

=X X

c'y €'y

A aik+bi;
Cij = E x® g

k

' '
¢ 11 ¢ 12
az an

cij = first(ci;)

Using matrix multiplication

to compute min-plus products

Assume: 0<ay;, b;<M

a @ b b

¢y, ¢y X X X X

. . a o ay by bn
Co Cnpn =X X X X

7o M Mn ©

olvnomial > operations per =  operations per

polyn polynomial max-plus
product

products product

Trying to implement the
repeated squaring algorithm

Consider an easy case:
all weights are 1.

D«WwW
for i <1 to log,n

do D « D*D
After the i-th iteration, the finite
elements in D are in the range {1,...,2'}.

The cost of the min-plus product is 2/ n®

The cost of the last product is n*+! !!!
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Sampled Repeated Squaring (Z *98)

? N Choose a subset of V
or i <1 to log;,n do .
{ of size (InInn)/s

s « (3/2)*!

B «rand(V,9nInn)/s)
D <« min{ D, D[V,B]*D[B,V] }
} N

Sampled Distance Products (Z *98)

n

In the i-th

" iteration, the set B
isofsizenlnn/s,
where s = (3/2)+!

ﬂ The matrices get
smaller and smaller

n = but the elements get

larger and larger

Sampled Repeated Squaring - Correctness

DeWw Invariant: After the i-th
for i «1 to log;,,n do . . -
iteration, distances that are
« 32y . . .
B rand(V, In ) attained using at most (3/2)’

D in{ D B1* AY
,  DemmDL DI edges are correct.

Consider a shortest path that uses at most (3/2)"! edges

at most at most

i(;)‘ i(;)‘ 1(3)
2\2 2\ 2 2\ 2

0@ wf\//\/\}

s/3
Failure | (1_9111 I’l) < n3
probability *

Lets = (3/2)i*!

P n

Naive complexity: an
[Coppersmith *97]: I/l]'85]70'54+l’l2+0(”

For p <n%?, complexity = n>*(/) 11!

Complexity of APSP algorithm

The i-th iteration:

n ln n /S S:(3/2)[+]
n
= The elements are
n x f of absolute value
> at most Ms

054 3
_ n n 68 2.
min{ Ms-n""¥ (—j ) < MO8
s s

Open problem:
Can APSP in directed graphs
be solved in O(n®) time?

Related result: [ Yuster-Zwick’04]
A directed graphs can be processed in O(n®)
time so that any distance query can be
answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n®) time.

The corollary obtained using a different
technique by Sankowski (2004)
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The preprocessing algorithm (YZ °05)

D« W;B«&«V
for i <1 to log,,n do
{
s < (3/2)+!
B < rand(B,(9nInn)/s)
D[V,B] « min{D[V,B], D[V,B]*D|B,B] }
DIB,V] « min{D[B,V], D[B,B]*D|B,V] }

The APSP algorithm

D«WwW
for i <1 to log,,n do
{
s « (3/2)i*!
B < rand(V,(9nlnn)/s)

D < min{ D, D|V,B|*D|B,V] }

Twice Sampled Distance Products

n

3
T [0
S S

&
== nm

4

/s
/8/

| s—

/8/ /8

~

The query answering algorithm

| o(wy) « DUu}LVEDIV,) |

v

Query time: O(n)

The preprocessing algorithm: Correctness
Let B, be the i-th sample. B> B,D2B;D>...

Invariant: After the i-th iteration, if ue B, or veB,
and there is a shortest path from u to v that uses at
most (3/2)" edges, then D(u,v)=6(u,v).

Consider a shortest path that uses at most (3/2)"! edges

at most at most

1(3)’ 1(;)’ 1(3)
2\2 2\ 2 2\ 2

P — "
A S 4

The query answering algorithm:
Correctness

Suppose that the shortest path from « to v
uses between (3/2)" and (3/2)"*! edges

at most at most

1 i)’%%i(i’ 1(3)
2\2 2\2 2\ 2

4o /Hm—/\y v

S —
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1. Algebraic matrix multiplication

a.  Strassen’s algorithm

b.  Rectangular matrix multiplication
2.  Min-Plus matrix multiplication

a.  Equivalence to the APSP problem

b.  Expensive reduction to algebraic products

c. Fredman’s trick
3. APSP in undirected graphs

a.  An O(n?*%) anlgorithm for unweighted graphs (Scidel)

b.  An O(Mn*3¥) algorithm for weighted graphs (Shoshan-Zwick)
4. APSP in directed graphs

1. An O(M"%n?3%) algorithm (Zwick)

2. An O(Mn>*) preprocessing / O(n) query answering alg. (Yuster-Z)

=) 3. An O(n*3*logM) (1+g)-approximation algorithm

5. Summary and open problems

Approximate min-plus products

Obvious idea: scaling

SCALEAMR): o < ([Ra,/M] . il‘OS'aU <M|
1 +c0 , otherwise {
APX-MPP(A.B.M.R) : | Complexity is Rn>38,
A’—SCALE(A,M,R) instead of Mn%38, but
B’—SCALE(B,M,R) small values can be
return MPP(A’,B’) greatly distorted.

Addaptive Scaling

APX-MPP(A,.B.M.R) :

C’ 0

for r<log,R to log,M do
A’«—SCALE(A,2",R)
B’«-SCALE(B,2",R)
C «min{C’ ,MPP(A’,B’)}

end

Complexity is Rn>38 logM
Stretch at most 1+4/R

1. Algebraic matrix multiplication
a. Strassen’s algorithm
b.  Rectangular matrix multiplication
2. Min-Plus matrix multiplication
a.  Equivalence to the APSP problem
b.  Expensive reduction to algebraic products
c. Fredman’s trick
3. APSP in undirected graphs
a.  An O(n*3*) anlgorithm for unweighted graphs (Seidel)
b.  An O(Mn>3%) algorithm for weighted graphs (Shoshan-Zwick)
4. APSP in directed graphs
1. An O(M°%n?3%) algorithm (Zwick)
2. An O(Mn>3¥) preprocessing / O(n) query answering alg. (Yuster-7)
3. An O(n>*loghM) (1+¢)-approximation algorithm

=) 5. Summary and open problems

All-Pairs Shortest Paths

in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,...M}

Running time Authors
Mn?38 [Shoshan-Zwick *99]

Improves results of
[Alon-Galil-Margalit *91] [Seidel *95]

All-Pairs Shortest Paths

in graphs with small integer weights

Directed graphs.
Edge weights in {-M,...,0,...M}
Running time Authors
MO-68 2.8 [Zwick *98]

Improves results of
[Alon-Galil-Margalit *91] [Takaoka "98]
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Answering distance queries

Directed graphs. Edge weights in {-M,...,0,...M}

Preprf)ceSSlng Q}lery Authors
time time
Mn238 n [Yuster-Zwick *05]

In particular, any Mn’-38 distances

can be computed in Mn?% time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’s SSSP algorithm.
Mn?38 vs. mn®logM

Approximate All-Pairs Shortest Paths

in graphs with non-negative integer weights

Directed graphs.
Edge weights in {0,1,...M}

(1+¢)-approximate distances

Running time Authors

(n*38log M)/e [Zwick *98]

Open problems

* An O(n>3®) algorithm for the directed
unweighted APSP problem?

* An O(n**) algorithm for the APSP
problem with edge weights in {1,2,...,n}?

* An O(n>>*) algorithm for the SSSP problem
with edge weights in {0,£1, £2,..., +n}?




