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Algebraic Matrix Multiplication

���� �( )i jA a���� ( )i jB b���� ( )i jC c����
i

j

Can be computed naively in O(n3) time.

Matrix multiplication algorithms

Coppersmith, Winograd (1990)n2.38

Strassen� (1969)n2.81

—n3

AuthorsComplexity

Conjecture/Open problem: n2+o(1)   ???
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Multiplying 2�2 matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)
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Strassen’ s 2�2 algorithm
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� 7 multiplications
18 additions/subtractions

Subtraction!

Strassen’ s n�n algorithm

View each n�n matrix as a 2�2 matrix 
whose elements are n/2 � n/2 matrices. 

Apply the 2�2 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)

Works over any ring!

Matrix multiplication algorithms

The O(n2.81) bound of Strassen was 
improved by Pan, Bini-Capovani-Lotti-

Romani, Schönhage and finally by 
Coppersmith and Winograd to O(n2.38). 

The algorithms are much more complicated…

We let 2 � � < 2.38 be the 
exponent of matrix multiplication.

Many believe that �=2+o(1).

Rectangular Matrix multiplication

[Coppersmith ’ 97]: n1.85p0.54+n2+o(1)

For p � n0.29, complexity = n2+o(1) !!!
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Naïve complexity:        n2p
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Boolean Matrix Multiplication

���� �( )i jA a���� ( )i jB b���� ( )i jC c����
i

j

Can be computed naively in O(n3) time.

Algebraic 
Product

O(n2.38)
algebraic 

operations

Boolean 
Product

or (�)
has no inverse!

?But, we can work
over the integers
(modulo n+1)!

O(n2.38)
operations on 

O(log n) bit words

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 
which (u,v)�E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n�) time.

Adjacency matrix 
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph, 
then (Ak)ij=1 iff there is a path of length k from i to j.

Transitive Closure 
using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 
which (u,v)�E* iff there is a path from u to v.

If A is the adjacency matrix of G, 
then (A�I)n�1 is the adjacency matrix of G*.

The matrix (A�I)n�1 can be computed by log n
squaring operations in O(n�log n) time.

It can also be computed in O(n�) time.

D*�GBD*D*CE

EBD*(A�BD*C)*

DC

BA

HG

FE

X =

X* = =

TC(n) � 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B
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Exercise 1: Give O(n�) algorithms for 
findning, in a directed graph,
a) a triangle
b) a simple quadrangle
c) a simple cycle of length k.

Hints:
1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.
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An interesting special case
of the APSP problem

A B

17

23

Min-Plus product

2
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Min-Plus Products
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125

703
48

528

5
731

571

252
1036

Solving APSP by repeated squaring

D � W
for i �1 to �log2n�
do D � D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n) � MPP(n) log n
Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized 
by paths that use at most k edges. 

D*�GBD*D*CE

EBD*(A�BD*C)*

DC

BA

HG

FE

X =

X* = =

APSP(n) � 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B
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Algebraic 
Product

ij ik kj
k

C A B

c a b

� �

� �

O(n2.38)

Min-Plus 
Product

min operation 
has no inverse!?

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b
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Using matrix multiplication
to compute min-plus products
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n�
polynomial 

products

M
operations per 

polynomial 
product

���� �

Mn�
operations per 

max-plus 
product

Assume:   0 � aij , bij� M

�#����������#�

APSP – All-Pairs Shortest Paths

SSSP – Single-Source Shortest Paths

The min-plus product of two n � n
matrices can be deduced after only 
O(n2.5) additions and comparisons. 

Fredman’ s trick 
Breaking a square product into 

several rectangular products

A2A1

B1

B2

* min *i ii
A B A B�

MPP(n) � (n/m) (MPP(n,m,n) + n2)

m

n
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Fredman’ s trick

A Bn

m
n

m

Naïve calculation requires n2m operations

air+brj � ais+bsj

air - ais � bsj - brj

�

Fredman observed that the result can be inferred
after performing only O(nm2) operations

Fredman’ s trick (cont.)

air+brj � ais+bsj air - ais � bsj - brj�

• Generate all the differences air - ais and bsj - brj .

• Sort them using O(nm2) comparisons. (Non-trivial!)

• Merge the two sorted lists using O(nm2) comparisons.

The ordering of the elements in the sorted list
determines the result of the min-plus product 

!!!

Decision Tree Complexity

a17-a19 � b92-b72

c11=a17+b71
c12=a14+b42

...

c11=a13+b31
c12=a15+b52

...

yes no

…

2.5n

…
c11=a18+b81
c12=a16+b62

...

c11=a12+b21
c12=a13+b32

...

All-Pairs Shortest Paths
in directed graphs with “real” edge weights

[Chan ’ 07]n3 (log log n)3 / (log n)2

[Han ’ 06]n3 (log log n / log n)5/4

[Chan ’ 05]n3 / log n

[Takaoka ’ 04]n3 log log n / log n

[Zwick ’ 04]n3 (log log n)1/2 / log n

[Han ’ 04]n3 (log log n / log n)5/7

[Dobosiewicz ’ 90]n3 / (log n)1/2

[Takaoka ’ 92]n3 (log log n / log n)1/2

[Fredman ’ 76]n3 (log log n / log n)1/3

[Floyd ’ 62] [Warshall ’ 62]n3

AuthorsRunning time
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4. APSP in undirected graphs
a. An O(n2.38) algorithm for unweighted

graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs

(Shoshan-Zwick)

5. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query 

answering algorithm (Yuster-Zwick)
3. An O(n2.38logM) (1+�)-approximation algorithm

6. Summary and open problems



�

Directed versus undirected graphs

x
y

z

�(x,z) � �(x,y) + �(y,z)

x
y

z

�(x,z) � �(x,y) + �(y,z)

�(x,z) � �(x,y) – �(y,z)

�(x,y) � �(x,z) + �(z,y)Triangle inequality

Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where 
(u,v)�E2 if and only if (u,v)�E or there 

exists w�V such that (u,w),(w,v)�E

Let � (u,v) be the distance from u to v in G.
Let �2(u,v) be the distance from u to v in G2.

�(u,v)=5 �2(u,v)=3

Distances in G and its square G2 (cont.)

Lemma: �2(u,v)=���(u,v)/2� ,  for every u,v�V.

Thus: �(u,v) = 2�2(u,v) or
�(u,v) = 2�2(u,v)��1 

�2(u,v) ����(u,v)/2�

�(u,v) ��2�2(u,v)

Distances in G and its square G2  (cont.)

Lemma: If �(u,v)=2�2(u,v) then for every 
neighbor w of v we have �2(u,w) � �2(u,v).

Lemma: If �(u,v)=2�2(u,v)–1 then for every 
neighbor w of v we have �2(u,w) � �2(u,v) and 

for at least one neighbor �2(u,w) < �2(u,v).

, , , , ,
( , )

( ) : deg( )u w u w w v u v u v
wv w E

c c a CA v c
�

� �� �

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Even distances
Lemma: If �(u,v)=2�2(u,v) then for every 
neighbor w of v we have �2(u,w) � �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Odd distances
Lemma: If �(u,v)=2�2(u,v)–1 then for every 

neighbor w of v we have �2(u,w) � �2(u,v) and 
for at least one neighbor �2(u,w) < �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 2: Prove the lemma.
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Even distances
Lemma: If �(u,v)=2�2(u,v) then for every 
neighbor w of v we have �2(u,w) � �2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Seidel’ s algorithm

Algorithm APD(A)
if A=J then

return J–I
else

C�APD(A2)
X�CA , deg�Ae–1
dij�2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix, 
then all distances are 1.

2. Compute A2, the adjacency 
matrix of the squared graph.

3. Find, recursively, the distances 
in the squared graph.

4. Decide, using one integer 
matrix multiplication, for every 
two vertices u,v, whether their 
distance is twice the distance in 
the square, or twice minus 1.

Complexity: 
O(n�log n)

Assume that A has 
1’ s on the diagonal.

Boolean matrix 
multiplicaion

Integer matrix 
multiplicaion

Exercise 3: (*) Obtain a version of 
Seidel’ s algorithm that uses only 
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for 
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the 
Boolean matrix multiplication.

Witnesses for 
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(n�log n) time.

Exercise 4:
a) Obtain a deterministic O(n�)-time 

algorithm for finding unique witnesses.
b) Let 1�d�n be an integer. Obtain a 

randomized O(n�)-time algorithm for 
finding witnesses for all positions that 
have between d and 2d witnesses.

c) Obtain an O(n�log n)-time algorithm for 
finding all witnesses.

Hint: In b) use sampling.



	

[Shoshan-Zwick ’ 99]Mn�
AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 
Edge weights in {0,1,…M}

Improves results of 
[Alon-Galil-Margalit ’ 91] [Seidel ’ 95]

&��� ��&

� # � ���� ��� � �# �

Exercise 5:
Obtain an O(n�log n) time algorithm for 

computing the diameter of an unweighted
directed graph.

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b
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Using matrix multiplication
to compute min-plus products
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� � � �� 	
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� � �

n�
polynomial 

products

M
operations per 

polynomial 
product

���� �

Mn �

operations per 
max-plus 
product

Assume:   0 � aij , bij� M

Trying to implement the 
repeated squaring algorithm

Consider an easy case: 
all weights are 1.

D ���� W
for i ����1 to log2n 
do D ���� D*D

After the i-th iteration, the finite 
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n�

The cost of the last product is n�+1 !!!
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Sampled Repeated Squaring  (Z ’ 98)

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand( V , (9n lnn)/s )
D ���� min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size (9n lnn)/s

Select the columns
of D whose 

indices are in B

Select the rows
of D whose 

indices are in B
With high probability, 

all distances are correct!
The is also a slightly more complicated 

deterministic algorithm

Sampled Distance Products (Z ’ 98)

�

�

�

���

In the i-th
iteration, the set B
is of size n ln n / s, 
where s = (3/2)i+1

The matrices get 
smaller and smaller

but the elements get 
larger and larger

Sampled Repeated Squaring - Correctness

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(V,(9 ln n)/s)
D ���� min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th
iteration, distances that are 
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln
(1 )

s
nn

s
���Failure 

probability :

Rectangular Matrix multiplication

[Coppersmith ’ 97]: n1.85p0.54+n2+o(1)

For p � n0.29, complexity = n2+o(1) !!!

���� �n

p

p

n

n

n

Naïve complexity:        n2p

Complexity of APSP algorithm

The i-th iteration:

����n

n ln n / s

n n ln
n / s

s=(3/2)i+1

The elements are 
of absolute value 

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s

 
� � �
� 	

0.68 2.58M n�

Open problem:
Can APSP in directed graphs 

be solved in O(n�) time?

Related result: [Yuster-Zwick’ 04]
A directed graphs can be processed in O(n�)

time so that any distance query can be 
answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n�) time.
The corollary obtained using a different 

technique by Sankowski (2004)
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The preprocessing algorithm (YZ ’ 05)

D ���� W ; B ����V
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(B,(9n lnn)/s)
D[V,B] ���� min{D[V,B] , D[V,B]*D[B,B] }
D[B,V] ���� min{D[B,V] , D[B,B]*D[B,V] }

}

The APSP algorithm

D ���� W
for i ����1 to log3/2n do
{

s ���� (3/2)i+1

B ���� rand(V,(9nlnn)/s)

}

D ���� min{ D , D[V,B]*D[B,V] }

Twice Sampled Distance Products

�

�

�

���

�

���

���

���

���
�

The query answering algorithm

�(u,v) ���� D[{u},V]*D[V,{v}]

u

v

Query time: O(n)

The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u� Bi or v�Bi
and there is a shortest path from u to v that uses at 

most (3/2)i edges, then D(u,v)=�(u,v).

Let Bi be the i-th sample.    B1� B2 �B3 �…

Consider a shortest path that uses at most (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

The query answering algorithm: 
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

� �1
2

3
2

i

� �1
2

3
2

i� �1
2

3
2

i
at most at most

u v
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1. Algebraic matrix multiplication
a. Strassen’ s algorithm
b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products
c. Fredman’ s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)

3. An O(n2.38logM) (1+�)-approximation algorithm
5. Summary and open problems

Approximate min-plus products

Obvious idea: scaling 

SCALE(A,M,R):
/ , if 0

, otherwise
ij ij

ij

Ra M a M
a

� �� � � �� ��  ! � " #
��� �$ %

APX-MPP(A,B,M,R) :
A’�SCALE(A,M,R)
B’�SCALE(B,M,R)
return MPP(A’ ,B’ )

Complexity is Rn2.38, 
instead of Mn2.38, but 
small values can be 

greatly distorted.

Addaptive Scaling

APX-MPP(A,B,M,R) :

C’��
for r�log2R to log2M do

A’�SCALE(A,2r,R)
B’�SCALE(B,2r,R)
C’�min{C’ ,MPP(A’ ,B’ )}

end

Complexity is Rn2.38 logM
Stretch at most 1+4/R

1. Algebraic matrix multiplication
a. Strassen’ s algorithm
b. Rectangular matrix multiplication

2. Min-Plus matrix multiplication
a. Equivalence to the APSP problem
b. Expensive reduction to algebraic products
c. Fredman’ s trick

3. APSP in undirected graphs
a. An O(n2.38) anlgorithm for unweighted graphs (Seidel)
b. An O(Mn2.38) algorithm for weighted graphs (Shoshan-Zwick)

4. APSP in directed graphs
1. An O(M0.68n2.58) algorithm (Zwick)
2. An O(Mn2.38) preprocessing / O(n) query answering alg. (Yuster-Z)
3. An O(n2.38logM) (1+�)-approximation algorithm

5. Summary and open problems

[Shoshan-Zwick ’ 99]Mn2.38

AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 
Edge weights in {0,1,…M}

Improves results of 
[Alon-Galil-Margalit ’ 91] [Seidel ’ 95]

All-Pairs Shortest Paths
in graphs with small integer weights

[Zwick ’ 98]M0.68 n2.58

AuthorsRunning time

Directed graphs. 
Edge weights in {−M,…,0,…M}

Improves results of 
[Alon-Galil-Margalit ’ 91] [Takaoka ’ 98]
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Answering distance queries

n

Query
time

[Yuster-Zwick ’ 05]Mn2.38

AuthorsPreprocessing 
time

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances 
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge 
weights, this improves on Goldberg’ s SSSP algorithm.

Mn2.38 vs. mn0.5logM

[Zwick ’ 98](n2.38 log M)/�
AuthorsRunning time

Approximate All-Pairs Shortest Paths
in graphs with non-negative integer weights

Directed graphs. 
Edge weights in {0,1,… M}

(1+�)-approximate distances

Open problems

• An O(n2.38) algorithm for the directed 
unweighted APSP problem?

• An O(n3-�) algorithm for the APSP 
problem with edge weights in {1,2,… ,n}?

• An O(n2.5-�) algorithm for the SSSP problem 
with edge weights in {0,±1, ±2,… , ±n}?


